Chapitre: Espace vectoriel

Exercice 1: quelques calculs

- 1) Parmi les sous-ensembles suivants de l'espace vectoriel $\mathbb{R}^{\mathbb{R}}$, déterminer ceux qui sont des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{R}}$:
 - a) L'ensemble des fonctions de classe C^1 :
 - **b)** L'ensemble des fonctions continues qui s'annulent en π ;
 - c) L'ensemble des fonctions telles que $f(\pi) = 3$;
 - d) L'ensemble des fonctions croissantes;
 - e) L'ensemble des fonctions monotones;
 - f) L'ensemble des fonctions π -périodiques ;
 - g) L'ensemble des fonctions paires;
 - h) L'ensemble des fonctions bornées;
 - i) L'ensemble des fonctions majorées.

- 2) Parmi les ensembles *F* suivants, déterminer ceux qui sont des sous-espaces vectoriels de l'espace *E* :
 - a) $F = \{(x, y, z) \mid 2x + y + 4z = 1\}$ avec $E = \mathbb{R}^3$;
 - **b)** $F = \{(x, y, z, t) \mid 2x + y + 4z = 1\}$ avec $E = \mathbb{R}^4$;
 - c) $F = \{(x, y, z) \mid x y + 3z = 0\}$ avec $E = \mathbb{R}^3$;
 - **d**) $F = \{(x, y, z) \mid 5x 3y + 2z \ge 0\}$ avec $E = \mathbb{R}^3$;
 - e) $F = \{(x, y, z) \mid x^2 + 2y^2 + 4z^2 2xy 4yz \ge 0\}$ avec $E = \mathbb{R}^3$;
 - **f**) $F = \{(x, y, z) \mid x = yz\} \text{ avec } E = \mathbb{R}^3.$

Exercice 2: (Cf. cours)

Soient F et G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E.

On veut montrer que : $F \cup G$ est un sous-espace vectoriel de E si, et seulement si ($F \subset G$ ou $G \subset F$).

- 1) Supposons $F \subset G$ (resp. $G \subset F$) quel est l'ensemble $F \cup G$? Conclure
- 2) Montrons à présent que $F \cup G$ est un sous-espace vectoriel de E implique $(F \subset G \text{ ou } G \subset F)$. Raisonnons par contraposition et supposons $\text{non}(F \subset G \text{ ou } G \subset F)$.
 - a) Traduire avec des quantificateurs $non(F \subset G \text{ ou } G \subset F)$
 - **b)** Conclure en utilisant l'égalité (dans un e.v.) : x = (x + y) + (-y)

Exercice 3:

Soient $E = \mathbb{R}^3$, $\alpha \in \mathbb{R}$, $e_1 = (1, 2, 1)$ et $e_2 = (1, 0, \alpha)$

- 1) (e_1, e_2) est-elle une famille libre de \mathbb{R}^3 ?
- 2) Déterminer une condition nécessaire et suffisante sur α pour que $e_3=(-3,-10,1)\notin \mathrm{Vect}(e_1,e_2)$.
- 3) Qu'en déduire dans ce cas pour la famille (e_1, e_2, e_3) ?

Exercice 4:

Soit E un espace vectoriel. Les familles suivantes sont-elles libres ? Génératrices de E ?

- a) $e_1 = (1, 2, 1), e_2 = (1, -1, -1), e_3 = (2, 1, 1), e_4 = (7, -5, 18)$ avec $E = \mathbb{R}^3$.
- **b**) $e_1 = (1, 2, 1), e_2 = (1, -1, -1), e_3 = (2, 1, 1) \text{ avec } E = \mathbb{R}^3.$

Exercice 5:

Soit (e_1, e_2, e_3, e_4) une famille libre. Les familles suivantes sont-elles libres ?

a) $(e_1, -e_4, e_3)$

d) $(2e_1-e_2, e_2+e_3, e_3-e_4, e_4)$

b) (e_1, e_4)

e) $(e_2 + e_3, e_3, e_4, -e_2 + 2e_3)$

c) (e_1)

Exercice 6:

1) Déterminer une base du sous-espace vectoriel F de \mathbb{R}^4 où

$$F = Vect((0,3,2,1),(2,-2,-6,4),(4,5,4,3),(2,1,1,1)).$$

2) Déterminer une base du sous-espace vectoriel F de \mathbb{R}^4 où

$$F = Vect((1, 2, -1, 1), (3, -1, 2, 1), (1, -5, 4, -1), (3, -8, 7, -1), (-4, 20, -16, 4)).$$

Exercice 7:

Soient $e_1 = (-2, 1, 1), e_2 = (1, -2, -3), e_3 = (1, 4, 7), e_4 = (1, 1, 2)$

- 1) (e_1, e_2, e_3, e_4) est-elle une base de \mathbb{R}^3 ?
- 2) (e_1, e_2) est-elle une base de $Vect(e_1, e_2, e_3, e_4)$?
- 3) Déterminer une ou plusieurs équations caractérisant $Vect(e_1, e_2, e_3, e_4)$.

Exercice 8:

On se propose dans cet exercice de « comparer » (en quel sens ?) dans \mathbb{R}^4 les espaces vectoriels

F = Vect((1,0,1,1),(1,2,-3,1),(3,4,-3,4)) et G = Vect((8,14,-16,10),(4,2,2,5)) de deux manières différentes.

Méthode 1:

- 1) Déterminer une ou plusieurs équations caractérisant F.
- 2) En déduire la « comparaison ».

Méthode 2:

- 1) Essayer d'exprimer les vecteurs générateurs de G comme combinaisons linéaires de ceux de F.
- 2) Conclure.

Exercice 9:

Soit $M \in \mathcal{M}_3(\mathbb{R})$ telle que : $M^2 \neq 0$ et $M^3 = 0$

Soit $F = Vect(I, M, M^2)$

- 1) Montrer que la famille (I, M, M^2) est libre.
- 2) En déduire que la famille (I, M, M^2) est une base de F.

Exercice 10:

Soient $E = \mathbb{R}^3$, $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + 2z = 0\}$ et $G = \{(\lambda + \mu, -2\lambda - \mu, \lambda - \mu) \mid (\lambda, \mu) \in \mathbb{R}^2\}$.

- 1) F et G sont-ils des sous-espaces vectoriels de E?
- 2) Déterminer $F \cap G$.
- 3) A-t-on E = F + G?
- **4)** A-t-on $E = F \oplus G$?
- 5) Comment aurait-on pu poser la question Q4 en « français »?

Exercice 11:

Soient $E = \mathbb{R}^3$, $e_1 = (3, 2, -3)$, $e_2 = (1, 4, 1)$, $e_3 = (-1, -14, -7)$ et $e_4 = (10, 0, -14)$

- 1) A-t-on : $Vect(e_1, e_2) = Vect(e_3, e_4)$?
- 2) Ecrire $Vect(e_1, e_2)$ sous la forme d'une ou plusieurs équations cartésiennes.
- 3) Donner un supplémentaire de Vect (e_1, e_2) . Est-ce un supplémentaire de Vect (e_3, e_4) ?

Exercice 12:

Soient $E = \mathbb{R}^3$, $F = \{(x, y, z) \in \mathbb{R}^3 \mid x = 2y = -z\}$ et $G = \{(x, y, z) \in \mathbb{R}^3 \mid 3x - y + 2z = 0\}$.

- 1) Déterminer une base de F et une base de G.
- 2) *F* et *G* sont-ils supplémentaires ?

Exercice 13:

Soient $F = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + 2z - 2t = 0, 3x + y + z - t = 0, x - y - z - 5t = 0\}$ et $G = \{(x, y, z, t) \mid x + 3y + 4t = 0\}.$

- 1) Déterminer une base de F et une base de G.
- 2) F et G sont-ils supplémentaires dans \mathbb{R}^4 ?
- 3) Donner un espace vectoriel supplémentaire de G dans \mathbb{R}^4 .
- 4) Comment procèderiez-vous si l'on vous demandait un supplémentaire de F dans \mathbb{R}^4 .