
PTSI Espaces vectoriels, part I 2023–2024

Feuille d’exercices 14
Espaces vectoriels, part I

Exercice 1 •◦◦ Un exemple facile Montre que les sous-ensembles de
R2

F “ tpx, yq| x` y “ 0u et G “ tpx, yq| x´ y “ 0u

sont des espaces vectoriels. L’ensemble F YG est-il un espace vecoriel ?

Exercice 2 •◦◦ Des SEV à « vues »

1. Soit E “ RR l’ensemble des fonctions de R dans R. Parmi les sous-ensembles F
suivants de E, déterminer ceux qui sont des sous-espaces vectoriels de E.

a. L’ensemble des fonctions de classe C 1.
b. L’ensemble des fonctions continues qui s’annulent en π.
c. L’ensemble des fonctions telles que fpπq “ 3.
d. L’ensemble des polynômes tels que P pX ` 1q “ 2P pXq et P p3q “ 0.
e. L’ensemble des fonctions croissantes.
f. L’ensemble des fonctions monotones.
g. L’ensemble des fonctions paires.
h. L’ensemble des fonctions de la forme x ÞÑ a cospx´ ϕq, avec pa, ϕq P R2.
i. L’ensemble des fonctions bornées.
j. L’ensemble des fonctions majorées.

2. Soit E “ R3. Parmi les sous-ensembles F suivants de E, déterminer ceux qui sont
des sous-espaces vectoriels de E. Le cas échéant, en donner une base.

a. F “ tpx, y, zq|2x` y ` 4z “ 1u.
b. F “ tpx, y, zq|x´ y ` 3z “ 0u.
c. F “ tpx, y, zq|5x´ 3y ` 2z ě 0u.
d. F “ tpx, y, zq|x2 ` 2y2 ` 4z2 ´ 2xy ´ 4yz ě 0u (attention au piège).

e. F “ tpx, y, zq|x “ yzu.

Correction :
Méthode :

1. Soit E “ RR l’ensemble des fonctions de R dans R. Parmi les sous-ensembles F
suivants de E, déterminer ceux qui sont des sous-espaces vectoriels de E.

a. On vérifie la stabilité par combinaison linéaire (direct).
b. On vérifie la stabilité par combinaison linéaire (direct).
c. La fonction nulle vérifie-t-elle cette condition ?
d. On peut introduire deux sous-ensemble, montrer que ce sont des sous-espaces

vectoriels, et conclure par intersection.
e. Si f est strictement croissante, que dire de ´f .
f. On peut avoir f et g monotones mais pas f ` g.
g. On vérifie la stabilité par combinaison linéaire (direct).
h. Pas évident... on peut développer et chercher à faire un lien avec Vectpcos, sinq.
i. On vérifie la stabilité par combinaison linéaire (direct). La mise en forme est

intéressante.
j. Si f est majorée, la fonction ´f l’est-elle forcément.

2. Soit E “ R3. Parmi les sous-ensembles F suivants de E, déterminer ceux qui sont
des sous-espaces vectoriels de E. Le cas échéant, en donner une base.

a. L’équation n’est pas homogène, donc...
b. Classique, voir cours.
c. Si un triplet vérifie cette inégalité, que dire de son opposé ?
d. Vu la tête de l’inéquation, on penserait que non. Ceci dit, on flaire l’identité

remarquable... si je vous dit que pa´ bq2 ě 0, en fait je vous dis rien...
e. L’équation n’est pas linéaire, trouver un triplet u qui fonctionne et regarder
´u ou encore 2u fonctionne encore.

Détails :

1. Soit E “ RR l’ensemble des fonctions de R dans R. Parmi les sous-ensembles F
suivants de E, déterminer ceux qui sont des sous-espaces vectoriels de E.

a. Oui, voir TD.
b. Oui, voir TD.
c. Non, voir TD.
d. Oui, voir TD.
e. Non, voir TD.
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f. Non, voir TD.
g. Vérifions les deux points du cours :

• La fonction nulle est paire.
• Soit pf, gq P F 2 deux fonctions paires, ainsi que pλ, µq P R2. Alors on a

pλf ` µgqp´xq “ λfp´xq ` µgp´xq “ λfpxq ` µgpxq “ pλf ` µgqpxq,

ce qui prouve que λf ` µg P F . L’ensemble des fonctions pâires est donc
stables par combinaison linéaire

Ces deux points prouvent F un sous-espace vectoriel de E.
h. Montrer que F “ Vectpcos, sinq.
i. Vérifions les deux points du cours :

• La fonction nulle est bornée.
• Soit pf, gq P F 2 deux fonctions bornées, c’est-à-dire qu’il existe M1 ě 0 et
M2 ě 0 tels que

@x P R, |fpxq| ďM1 et |gpxq| ďM2.

Soit pλ, µq P R2. Alors on a

@x P R, |pλf ` µgqpxq| “ |λfpxq ` µgpxq|

ď |λfpxq| ` |µgpxq| par inégalité triangulaire
“ |λ||fpxq| ` |µ||gpxq|

ď |λ|M1 ` |µ|M2.

Cela prouve que λf`µg est bornée, et donc l’ensemble des fonctions paires
est stable par combinaison linéaire.

Ces deux points prouvent F un sous-espace vectoriel de E.
j. La fonction f : x ÞÑ ´x2 est majorée (par 0), mais la fonction ´f n’est pas

majorée. Cela prouve que F n’est pas un sous-espace vectoriel de E.

2. Soit E “ R3. Parmi les sous-ensembles F suivants de E, déterminer ceux qui sont
des sous-espaces vectoriels de E. Le cas échéant, en donner une base.

a. L’origine p0, 0, 0q n’est pas dans F , ce n’est donc pas un sous-espace vectorielde
E.

b. L’ensemble F est un sous-espace vectorielde R3, voir le cours pour ce genre
de preuve (l’origine est dedans, on peut vérifier la stabilité par combinaison
linéaire, on bien on peut l’écrire comme un Vect).

c. Le triplet u “ p1, 0, 0q est dans F mais pas ´u. Cela prouve que F n’est pas
un sous-espace vectoriel de E.

d. C’est un piège ensembliste : l’inéquation est en fait toujours vérifiée comme
on va le voir. On a x2 ` 2y2 ` 4z2 ´ 2xy ´ 4yz “ px ´ yq2 ` py ´ 2zq2, cette
quantité est donc toujours positive. Ainsi, F “ E : c’est bien un sous-espace
vectorielde E.

e. Le triplet u “ p1, 1, 1q est dans F mais pas ´u. Cela prouve que F n’est pas
un sous-espace vectoriel de E.

Exercice 3 •◦◦ Union de SEV Soient F et G deux sous-espaces
vectoriels d’un K-espace vectoriel E. Le but de cet exercice est de montrer que F Y G
est un sous-espace vectorielde E si et seulement si F Ă G ou G Ă F .

1. Supposons l’une des deux inclusions vraies. Que dire de F YG ? Conclure.
2. Supposons réciproquement que qu’on n’a pas « F Ă G ou G Ă F ».

a. Traduire cette hypothèse avec des quantificateurs.
b. Conclure en utilisant la formule x “ px` yq ` p´yq.

Correction :
Méthode :

1. Supposons l’une des deux inclusions vraies. Que dire de F YG ? Conclure.
2. Supposons réciproquement que qu’on n’a pas « F Ă G ou G Ă F ».

a. Traduire cette hypothèse avec des quantificateurs.
b. Conclure en utilisant la formule x “ px` yq ` p´yq.

Détails :

1. Si F Ă G alors F YG “ G, et si G Ă F alors F YG “ G´ F . Dans les deux cas,
F YG est un sous-espace vectorielde E.

2. Supposons réciproquement que qu’on n’a pas « F Ă G ou G Ă F ».

a. Puisque on n’a pas F Ă G, il existe x P F avec x R G. De même, puisque on
n’a pas G Ă F , il existe y P G avec y R F .

b. Supposons par l’absurde que F Y G est un sous-espace vectoriel de E. Alors
x P F Y G et y P F Y G, donc par stabilité, x ` y P F Y G. Est-il dans F ou
dans G ? Supposons que x` y P G, alors on aurait

x “ px` yq
loomoon

PG

` p´yq
loomoon

PG

,

et donc x P G puisque G est un sous-espace vectorielde E, ce qui contredit
l’hypothèse sur y. Par symétrique, si x` y P F , on aboutit à y P F . Dans les
deux cas c’est absurde, et donc F YG n’est pas un sous-espace vectorielde E.
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Exercice 4 •◦◦ Une famille de trois vecteurs Soient E “ R3, α P R,
et les deux vecteurs e1 “ p1, 2, 1q et e2 “ p1, 0, αq de R3.
1. La famille pe1, e2q est-elle une famille libre ?
2. Soit e3 “ p´3,´10, 1q. Déterminer une condition nécessaire et suffisante sur α pour

que e3 R Vectpe1, e2q.
3. Qu’en déduire dans ce cas pour la famille pe1, e2, e3q ?

Exercice 5 •◦◦ Les équadiffs linéaires homogènes d’ordre 1 revisitées
On considère l’équation différentielle

y1pxq ` apxqypxq “ 0,

où a : RÑ R est une fonction continue, et y : RÑ R la fonction inconnue. Montrer que
l’ensemble des solutions est un espace vectoriel de la forme Vectpy0q, où on rappelera y0
en fonction de a.
Correction :
Méthode :
Expliciter les solutions.
Détails :
Introduisons A : x ÞÑ

´ x
aptqdt, une primitive de a. Alors l’ensemble des solutions est

S “ tx ÞÑ λe´Apxq, λ P Ru.

Posons y0 : x ÞÑ e´Apxq, alors l’ensemble des solutions se réécrit S “ Vectpy0q. C’est une
droite (de l’espace vectoriel RR, l’ensemble des fonction de R dans R).

Exercice 6 •◦◦ Exemple de familles de R3 Les familles de vecteurs de
R3 suivantes sont-elles libres ? Génératrices dans R3 ?
1. La famille e1 “ p1, 2, 1q, e2 “ p1,´1,´1q, e3 “ p2, 1, 1q et e4 “ p7,´5, 18q.
2. La famille e1 “ p1, 2, 1q, e2 “ p1,´1,´1q, e3 “ p2, 1, 1q.

Exercice 7 •◦◦ Familles libres Soit pe1, e2, e3, e4q une famille libre d’un
espace vectoriel E. Les familles suivantes sont-elles libres ?

1. pe1,´e4, e3q. 2. pe1, e4q. 3. pe1q.
4. p2e1 ´ e2, e2 ` e3, e3 ´ e4, e4q. 5. pe2 ` e3, e3, e4,´e2 ` 2e3q.

Correction :
Méthode :

1. On revient à la définition, mais c’est direct ici.
2. Direct.
3. Pour un seul vecteur, la réponse est triviale.
4. On revient à la définition.
5. On peut revenir à la définition, on chercher à l’oeil à relier les vecteurs par une

combinaison linéaire.

Détails :

1. Soient pα, β, γq P R3 tels que αe1 ´ βe4 ` γe3 “ 0. Puisque la famille pe1, e2, e3, e4q
est libre, on a α “ ´β “ γ “ 0. Cela prouve que la famille pe1,´e4, e3q est libre.

2. C’est une sous-famille de la famille pe1, e2, e3, e4q qui est libre, elle est donc libre.
On peut aussi dire qu’ils ne sont pas colinéaires, sinon pe1, e2, e3, e4q ne serait pas
libre.

3. Le vecteur e1 est non nul, sinon pe1, e2, e3, e4q ne serait pas libre. Un vecteur non
nul forme toujours une famille libre.

4. Soient pλ1, λ2, λ3, λ4q tels que

λ1p2e1 ´ e2q ` λ2pe2 ` e3q ` λ3pe3 ´ e4q ` λ4e4 “ 0.

On a alors, en regroupant selon chaque vecteur :

2λ1e1 ` p´λ1 ` λ2qe2 ` pλ2 ` λ3qe3 ` λ4e4 “ 0.

Puisque la famille pe1, e2, e3, e4q est libre, on déduit :
$

’

’

&

’

’

%

2λ1 “ 0
´λ1 ` λ2 “ 0
λ2 ` λ3 “ 0
λ4 “ 0

et donc λ1 “ λ2 “ λ3 “ λ4 “ 0.

Cela prouve que la famille p2e1 ´ e2, e2 ` e3, e3 ´ e4, e4q est libre.
5. On peut procéder comme ci-dessus et aboutir à un système, mais on peut aussi

repérer que
pe2 ` e3q ` p´e2 ` 2e3q “ e3,

c’est-à-dire qu’un des vecteurs de la famille est combinaison linéaire des autres.
Cela prouve que la famille n’est pas libre.

Exercice 8 •◦◦ Familles de R3 Soient e1 “ p´2, 1, 1q, e2 “ p1,´2,´3q,
e3 “ p1, 4, 7q et e4 “ p1, 1, 2q.
1. La famille pe1, e2, e3, e4q est-elle une base de R3 ?
2. La famille pe1, e2q est-elle une base de Vectpe1, e2, e3, e4q ?
3. Déterminer une ou plusieurs équations caractérisant Vectpe1, e2, e3, e4q.
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Exercice 9 •◦◦ sous-espaces vectoriels de R4 Déterminer une base des
sous-espaces vectoriels de R4 suivants :
1. Vectpp0, 3, 2, 1q, p2,´2,´6, 4q, p4, 5, 4, 3q, p2, 1, 1, 1qq

2. Vectpp1, 2,´1, 1q, p3,´1, 2, 1q, p1,´5, 4,´1q, p3,´8, 7, 1q, p´4, 20,´16, 4qq.
Dans chaque cas, donner des équations caractérisant le sous-espace vectoriel engeandré.

Exercice 10 ••◦ Famille de matrices Soit M PM3pRq telle que M2 ‰ 0
et M3 “ 0. Soit F “ VectpI3,M,M2q.
1. Donner une telle matrice (on pensera à une matrice triangulaire stricte).
2. Montrer que la famille pI3,M,M2q est libre.
3. En déduire que cette famille est une base de F .
Correction :
Méthode :

1. On a déjà vu ce genre de matrice lorsque l’on calculait les puissances d’une matrice
triangulaire supérieure stricte.

2. Partir de la définition, et chercher à faire apparaître M3.
3. Le plus dur est fait, on cite maintenant son cours. Veillez à bien dire « la famille

est libre et génératrice donc c’est une base ».

Détails :

1. La matrice

M “

¨

˝

0 1 0
0 0 1
0 0 0

˛

‚

convient.
2. Soit pλ1, λ2, λ3q P R3 tel que

λ1I3 ` λ2M ` λ3M
2 “ 0.

On multiplie cette identité par M2 :

λ1M
2 ` λ2M

3 ` λ3M
4 “ 0.

Or M4 “ M3 “ 0, ainsi, puisque M2 ‰ 0, on déduit λ1 “ 0. On revient à l’hy-
pothèse qui s’écrit maintenant λ2M ` λ3M

2 “ 0. On multiplie par M , et par les
mêmes arguments, on trouve λ2 “ 0, puis λ3 “ 0. Finalement, λ1 “ λ2 “ λ3 “ 0.
Cela prouve que la famille pI3,M,M2q est libre.

3. La famille pI3,M,M2q est libre est génératrice de F par définition de F , elle est de
plus libre, c’est donc une base de F .

Exercice 11 ••◦ Sous-espace supplémentaires Soit E “ R3, ainsi ques
les sous-ensembles de E suivants :

F “ tpx, y, zq P E, x` y ` 2z “ 0u et G “ tpλ` µ,´2λ´ µ, λ´ µq, pλ, µq P R2u.

1. Montrer que F et G sont des sous-espaces vectoriels de E. En donner des bases
respectives.

2. Déterminer F XG.
3. A-t-on E “ F `G ?
4. A-t-on E “ F

À

G ?
5. Interpréter la question précédente.
Correction :
Méthode :

1. Standard, à savoir faire absolument.
2. Considérer u P F XG et revenir aux définitions.
3.
4.
5.

Détails :

1. On en appliquant directement les techniques du cours :

F “ tpx, y, zq P E| x` y ` 2z “ 0u

“ tpx, y, zq P E| x “ ´y ´ 2zu pon exprime une variable en fonction des autresq

“ tp´y ´ 2z, y, zq, py, zq P R2u pon réinjecteq

“ typ´1, 1, 0q ` zp´2, 0, 1q, py, zq P R2u pon met en facteur les variables libresq
“ Vectpp´1, 1, 0q; p´2, 0, 1qq.

Cela prouve que F est un espace vectoriel, et qu’une famille générarice en
est pp´1, 1, 0q; p´2, 0, 1qq. Or ces deux vecteurs sont clairement non colinéaires,
comme une famille de deux vecteurs non colinéaires est toujours libre, la famille
pp´1, 1, 0q; p´2, 0, 1qq est une base de F .
On a directement :

G “ tλp1,´2, 1q ` µp1,´1´ 1q, pλ, µq P R2u “ Vectpp1,´2, 1q; p1,´1,´1qq.

Cela prouve que G est un espace vectoriel, et qu’une famille générarice en est
pp1,´2, 1q; p1,´1,´1qq. Or ces deux vecteurs sont clairement non colinéaires,
comme une famille de deux vecteurs non colinéaires est toujours libre, la famille
pp1,´2, 1q; p1,´1,´1qq est une base de G.
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2. Soit u P F XG, puisque u P F , on l’écrit u “ px, y, zq avec x` y ` 2z “ 0, de plus
comme u P G, il existe pλ, µq P R2 tel que u “ pλ` µ,´2λ´ µ, λ´ µq. Ainsi, on a

u P F XG ðñ Dpx, y, z, λ, µq P R5,

$

’

’

&

’

’

%

x “ λ` µ
y “ ´2λ´ µ,
z “ λ´ µ
x` y ` 2z “ 0

.

Comment résoudre intélligement ce système ? Le pivot ne semble pas pertinent, on
peut plutôt injecter x, y et z dans pL4q pour exprimer relier λ et µ. On trouve que

u P F XG ðñ

$

’

’

&

’

’

%

x “ λ` µ
y “ ´2λ´ µ,
z “ λ´ µ
λ´ 2µ “ 0

ðñ

$

’

’

&

’

’

%

x “ 3µ
y “ ´3µ,
z “ µ
λ “ 2µ

.

Finalement,

F XG “ tp3µ,´3µ, µq, µ P Ru “ Vectpp3,´3, 1qq.

3. Bien qu’on aura bientôt des outils pour accéler la réponse, nous répondons ici à
la main. Soit pa, b, cq P R3, on cherche à savoir s’il existe u “ px, y, zq P F et
v “ pλ` µ,´2λ´ µ, λ´ µq P G tels que pa, b, cq “ u` v. Ceci est équivalent à
$

’

’

&

’

’

%

a “ x` λ` µ
b “ y ´ 2λ´ µ
c “ z ` λ´ µ
x` y ` 2z “ 0 car u P F

ðñ
L4ÐL4´L1´L2´2L3

$

’

’

&

’

’

%

x` λ` µ “ a
y ´ 2λ´ µ “ b
z ` λ´ µ “ c
´λ` 2µ “ ´a´ b´ 2c

Ouvrez l’oeil : ce système est échelonné par rapport à px, y, z, λ, µq. Il admet donc
des solutions (que l’on peut expliciter en fonction par exemple de λ, et bien sûr de
pa, b, cq. Finalement, on a prouvé :

@pa, b, cq P E, Dpu, vq P F ˆG, pa, b, cq “ u` v.

Cela prouve que E “ F `G.

4. Puisque F X G ‰ t0u, la somme n’est pas directe, et on n’a pas E “ F
À

G. On
pouvait ausi revenir à la définition : il n’y a pas unicité au système de la question
précédente.

Exercice 12 •◦◦ Familles de R3 Soit E “ R3, ainsi que les vecteurs
e1 “ p3, 2,´3q, e2 “ p1, 4, 1q, e3 “ p´1,´14,´7q et e4 “ p10, 0,´14q.
1. A-t-on Vectpe1, e2q “ Vectpe3, e4q.
2. Décrire Vectpe1, e2q à l’aide d’une ou de plusieurs équations cartésiennes.
3. Donner un supplémentaire de Vectpe1, e2q. Est-ce un supplémentaire de

Vectpe3, e4q ?

Exercice 13 ••◦ Sous-espace supplémentaires, bis Soit E “ R3, ainsi
ques les sous-ensembles de E suivants :

F “ tpx, y, zq P E| x “ 2y “ ´zu et G “ tpx, y, zq P E| 3x´ y ` 2z “ 0u.

1. Montrer que F et G sont des sous-espaces vectoriels de E.
2. Déterminez une base de F et une base de G.
3. Les sous-espaces vectoriels F et G sont-ils supplémentaires dans E ?
Correction :
Méthode :

1. Le mieux est d’écrire les sous-ensembles « comme un vect », en exprimant certaines
des variables en fonction des autres, ce qui prépare la question suivante.

2. Avec la question précédente, on a déjà des familles génératrices, il faut justifier
qu’elles sont libres.

3. Revenir à la définition. On verra des raccourcis au chapitre « dimension ».

Détails :

1. On a

F “ tpx, y, zq P E| x “ 2y “ ´zu

“ tp2y, y,´2yq, y P Ru
“ typ2, 1,´2q, y P Ru
“ Vectpp2, 1,´2qq.

Cela prouve que F est un espace vectoriel, et qu’une famille générarice est donnée
par le vecteur p2, 1,´2q.
De même, on a

G “ tpx, y, zq P E| 3x´ y ` 2z “ 0u

“ tpx, y, zq P E| y “ 3x` 2zu pon exprime une variable en fonction des autresq

“ tpx, 3x` 2z, zq, px, zq P R2u pon réinjecteq

“ txp1, 3, 0q ` zp0, 2, 1q, px, zq P R2u pon met en facteur les variables libresq
“ Vectpp1, 3, 0q; p0, 2, 1qq.

Cela prouve que G est un espace vectoriel, et qu’une famille génératrice en est
pp1, 3, 0q; p0, 2, 1qq.

2. On a vu que pp2, 1,´2qq est une famille génératrice de F , de plus un vecteur non
nul forme une famille libre, ainsi pp2, 1,´2qq est une base de F .
On a vu que pp1, 3, 0q; p0, 2, 1qq est une famille génératrice de G, de plus ces vecteurs
sont non colinéaires, or deux vecteurs non colinéaire forment une famille libre, ainsi
pp1, 3, 0q; p0, 2, 1qq est une base de G. Attention, cet argument aurait été faux pour
plus de deux vecteurs, et il aurait fallu montrer la liberté autrement !
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3. Revenons à la définition : on se donne pa, b, cq P R3 quelconque, et on doit montrer
qu’il existe un unique couple pu, vq P F ˆ G tel que pa, b, cq “ u ` v. Ecrivons
u “ λp2, 1,´2q et v “ px, 3x ` 2z, zq, avec λ P R et px, zq P R2 des inconnues, on
est amené à résoudre :

$

&

%

a “ 2λ` x
b “ λ` 3x` 2z
c “ ´2λ` z

, d’inconnue pλ, x, zq P R3.

Après un pivot rapide, on constate que ce système admet une unique solution. On
a donc montré que

@pa, b, cq P R3, D!pu, vq P F ˆG tel que pa, b, cq “ u` v.

Cela prouve que F et G sont supplémentaires dans E, ce que l’on note E “ F
À

G.
Notez qu’avec les outils du chapitre dimension, on se contentera de vérifier que
F XG “ t0u et que dimpF q ` dimpGq “ dimpEq “ 3, ce qui est moins calculatoire.

Exercice 14 ••◦ Sous-espace supplémentaires dans R4 Soit E “ R4,
ainsi ques les sous-ensembles de E suivants :

F “
 

px, y, z, tq P E,

$

’

&

’

%

x` y ` 2z ´ 2t “ 0

3x` y ` z ´ t “ 0

x´ y ´ z ´ 5t “ 0

(

et G “ tpx, y, z, tq P E, x´y´z´5t “ 0u.

1. Montrer que F et G sont des sous-espaces vectoriels de E.
2. Déterminez une base de F et une base de G.
3. Les sous-espaces vectoriels F et G sont-ils supplémentaires dans E ?
4. Donner un sous-espace vectoriel supplémentaire de G dans R4.
5. Quelle stratégie utiliser si on vous demande un supplémentaire de F dans R4 ?
Correction :
Méthode :

1.
2.
3.

Détails :

1. On a après échelonnement (voir TD) :
$

&

%

x` y ` 2z ´ 2t “ 0
3x` y ` z ´ t “ 0
x´ y ´ z ´ 5t “ 0

ðñ

$

&

%

x` y ` 2z ´ 2t “ 0
´2y ´ 5z ` 5t “ 0 “ 0
2z ´ 8t “ 0

ðñ

$

&

%

x “ 3
2 t

y “ ´ 15
2 t

z “ 4t

Ainsi, on a

F “ tp 32 t,´
15
2 t, 4t, tq, avec t P Ru “ Vectpp 32 ,´

15
2 , 4, 1qq “ Vectpp3,´15, 8, 2qq.

Cela prouve que F est un sous-espace vectorielde E, et que la famille pp 32 ,´
15
2 , 4, 1qq

est génératrice de F .
De même, on a

G “ tpx, y, z, tq P E| x´ y ´ z ´ 5t “ 0u

“ tpx, y, z, tq P E| x “ y ` z ` 5tu pon exprime une variable en fonction des autresq

“ tpy ` z ` 5t, y, z, tq, py, z, tq P R3u pon réinjecteq

“ typ1, 1, 0, 0q ` zp1, 0, 1, 0q ` tp5, 0, 0, 1q, py, z, tq P R3u

“ Vectpp1, 1, 0, 0q; p1, 0, 1, 0q; p5, 0, 0, 1qq.

Cela prouve que G est un espace vectoriel, et qu’une famille génératrice en est
pp1, 1, 0, 0q; p1, 0, 1, 0q; p5, 0, 0, 1qq.

2. On a vu que la famille pp 32 ,´
15
2 , 4, 1qq est génératrice de F . De plus un vecteur non

nul forme une famille libre, ainsi pp 32 ,´
15
2 , 4, 1qq est une base de F .

De même, on a vu que la famille pe1, e2, e3q “ pp1, 1, 0, 0q; p1, 0, 1, 0q; p5, 0, 0, 1qq est
génératrice de G. Montrons qu’elle est libre : soient pα, β, γq P R3 tels que

αe1 ` βe2 ` γe3 “ 0.

On a alors
$

’

’

&

’

’

%

α` β ` 5γ “ 0
α “ 0
β “ 0
γ “ 0

.

Ainsi, on a α “ β “ γ “ 0, ce qui prouve que la famille pe1, e2, e3q est libre. C’est
donc une base de G.
Remarque : Notez que montrer la liberté d’une famille obtenue par échelonnement
d’un système est souvent direct ! Il vaut tout de même mieux le faire pour montrer
que vous connaissez votre cours.

3. On peut revenir à la définition, mais commençons par vérifier que la somme F `G
est directe, ce n’est peut-être pas le cas. Soit u P F XG, puisque u P F , on écrit

u “ p 32 t,´
15
2 t, 4t, tq, avec t P R.

Puisque u P G, l’équation de G donne :

3

2
t`

15

2
t´ 4t´ 5t “ 0 ðñ 0 “ 0,
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ce qui traduit qu’un élément de F est automatiquement dans G, ainsi, on a F Ă G,
et donc F XG “ F , ce qui prouve que la somme F `G n’est pas direct, et donc F
et G ne sont pas supplémentaires.
Remarque : Ceux qui sont revenus à la définition auront abouti sur un système
qui n’a pas une unique solution.

4. A ce stade, il faut avoir intuiter la notion de dimension : une base de G possédant
trois éléments, on pense qu’un seul vecteur (qui n’est pas dans G) suffit à engendrer
un supplémentaire dans R4. Posons par exemple e4 “ p1, 0, 0, 0q, et prouvons que
R4 “ G

À

Vectpe4q. Soit pa, b, c, dq P R4, fixé mais quelconque, on veut monter que
l’équation

pa, b, c, dq “ u` λp1, 0, 0, 0q, d’inconnues u P G et λ P R

possède une unique solution. On profite d’avoir trouvé une base de G. On écrit donc
u “ αe1 ` βe2 ` γe3, et on résout :

$

’

’

&

’

’

%

a “ α` β ` 5γ ` λ
b “ α
c “ β
d “ γ

Il est direct que ce système admet une unique solution pα, β, γ, λq “ pb, c, d, a´ b´
c´ 5dq, ce qui prouve que

R4 “ G
à

Vectpe4q,

donc que G et Vectpe4q sont supplémentaires dans R4.
Remarque : Si on connait déjà le théorème du lien entre dimension et supplémen-
taire, on peut simplement constater que
"

dimG` dimpVectpe4qq “ 3` 1 “ 4 “ dimR4 pégalité des dimensions)q
GXVectpe4q “ t0u psomme directe, à montrer à la main mais c’est facile)

Cela suffit à affirmer que E “ G
À

Vectpe4q.
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