Feuille d'exercices 10 Dérivabilité

— Exercice 1 •○○ — Vrai ou faux? Dire si les assertions suivantes sont vraies ou fausses, en citant le cours (ou en faisant une preuve), ou en exhibant un contre-exemple :

- 1. Si une fonction dérivable sur \mathbb{R} est paire, alors sa dérivée est impaire.
- **2.** Si une fonction dérivable sur \mathbb{R} a sa dérivée paire, alors elle est impaire.
- **3.** Si une fonction est dérivable sur \mathbb{R} , alors sa dérivée est continue.
- 4. Toute fonction définie sur $\mathbb R$ admet une tangente horizontale en un extremum.
- **5.** Sur un intervalle [a, b], si une fonction dérivable admet un maximum, alors sa dérivée s'annule en ce point.

Exercice 2 •oo **Une fonction auxiliaire** Soit la fonction $f: \mathbb{R}_+^* \to \mathbb{R}$ définie par $f(x) = e \ln(x) - x$.

- **1.** Etudier les variations de f.
- **2.** En déduire une comparaison entre π^e et e^{π} .

Exercice 3 •oo **Une famille de fonction (ENAC 2023)** Pour $\lambda \in \mathbb{R}$, on considère la fonction $f_{\lambda} : \mathbb{R} \to \mathbb{R}$ définie par

$$f_{\lambda}: x \mapsto \frac{x+\lambda}{x^2+1}.$$

- 1. Montrer que les tangentes en 0 aux fonctions f_{λ} sont parallèles.
- 2. Montrer que les tangentes en 1 aux fonctions f_{λ} sont concourrantes.

— Exercice 4 •○○ **— Régularité** Etudier la « régularité » des fonctions suivantes sur leurs ensembles de définition (c'est-à-dire jusqu'où va leur régularité dans les différentes notions de continuité et de dérivabilité) :

- **1.** $x \mapsto \sqrt{-x^2 + x + 6}$ (préciser l'ensemble de définition).
- 2. $x \mapsto \begin{cases} \frac{\sqrt{x^2+3}-2}{x-1} & \text{si } x \neq 1 \\ \frac{1}{2} & \text{sinon} \end{cases}$ (on se contentera de la continuité).
- 3. $x \mapsto x\sqrt{|x|}$.

— Exercice 5 ••• Définie par morceaux Soit la fonction f définie sur \mathbb{R} par

$$f(x) = \begin{cases} \frac{\sin ax}{x} & \text{si } x < 0\\ 1 & \text{si } x = 0\\ be^{bx} - (c + 12)x & \text{si } x > 0 \end{cases}$$

- **1.** Donner une CNS pour que f soit continue sur \mathbb{R} .
- **2.** Donner une CNS pour que f soit de classe \mathscr{C}^1 sur \mathbb{R} .

Exercice 6 ••• Formule de Leinbitz et astuce Pour $n \in \mathbb{N}$, calculer la dérivée n-ième de la fonction $x \mapsto x^4 e^{5x}$.

Exercice 7 ••• **Une fonction plate qui décolle** Soit la fonction définie $\operatorname{sur} \mathbb{R} \operatorname{par}$

$$f(x) = \begin{cases} e^{-\frac{1}{x}} & \text{si } x > 0\\ 0 & \text{sinon} \end{cases}$$

1. Justifier que f est C^{∞} sur $]0, +\infty[$. Pour $n \in \mathbb{N}$, montrer qu'il existe un polynôme P_n et un entier $q_n \in \mathbb{N}$ tel que la dérivée n-ième de f est de la forme

$$\forall x > 0, \quad f^{(n)}(x) = \frac{P_n(x)}{x^{q_n}} e^{-\frac{1}{x}}.$$

2. En déduire que la fonction f est de classe \mathscr{C}^{∞} sur \mathbb{R} et donner ses dérivées en 0.

- **1.** Montrer que si $f(a) \neq 0$, la fonction |f| est dérivable en a.
- **2.** On suppose que f(a) = 0. A l'aide d'un développement limité en 0, montrer que |f| admet des dérivées à gauche et à droite en 0, et dire si |f| est dérivable en 0 (on distinguera les cas selon la valeur de f'(a)).
- **3.** En déduire une CNS pour que |f| soit dérivable en a.

Exercice 9 ••• Une forme indeterminée Soit une fonction $f: I \to \mathbb{R}$ dérivable en $a \in I$. Déterminer

$$\lim_{x \to a} \frac{af(x) - xf(a)}{x - a}.$$

Exercice 10 ••• Inverser une fonction Soit la fonction f définie sur [-1,1] par

$$f(x) = \begin{cases} \frac{1}{x} \left(\sqrt{1 + x^2} - \sqrt{1 - x^2} \right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

- **1.** Montrer que f est continue sur [-1,1].
- **2.** Montrer que $f \in \mathcal{C}^1(]-1,1[\setminus\{0\}])$ et déterminer f' sur $]-1,1[\setminus\{0\}]$.
- **3.** Montrer que f est $\mathscr{C}^1(]-1,1[)$, et donner f'(0).
- **4.** Etablir les variations de f sur [-1,1]. montrer que f établit une bijection sur un ensemble J à préciser.
- **5.** Montrer que $f^{-1} \in \mathcal{C}^1(J)$, et déterminer $(f^{-1})'$.

Exercice 11 ••• Un encadrement du logarithme Montrer que

$$\forall x > 0, \quad \frac{x}{1+x} \le \ln(1+x) \le x.$$

En déduire un encadrement de ln(1,01).

Exercice 12 •oo **Des propriétés pour** f' Soit $f:[0,1] \to \mathbb{R}$ une fonction continue, et dérivable sur]0,1[telle que

$$f(0) = 0$$
 et $\forall x \in]0, 1], f'(x) \neq 0.$

- **1.** Montrer que pour $x \neq 0$, on a $f(x) \neq 0$.
- **2.** Montrer que f garde un signe constant sur]0,1[.

Exercice 13 ••• **Couper l'exponentielle** Pour un polynôme P donné, on s'intéresse à l'équation $P(x) = e^x$, d'inconnue $x \in \mathbb{R}$.

- **1.** Etudier le cas où P est une fonction affine.
- **2.** Montrer par récurrence que l'équation a au plus n+1 solutions, où n est le degré de P (pour l'hérédité, on pourra supposer par l'absurde que l'équation $P(x) = e^x$ avec P de degré n+1 admet au moins n+3 solutions).

Exercice 14 ••• Une histoire de corde Soit $f:[0,1] \to \mathbb{R}$ une fonction dérivable telle que

$$f(0) = f(1) = f'(0) = 0.$$

On veut montrer qu'il existe $c \in]0,1[$ tel que la tangente à la courbe de f en c passe par l'origine.

- 1. Traduire le problème par une équation sur c.
- ${\bf 2}.$ Démontrer le résultat, en étudiant la fonction définie sur [0,1] par

$$g: x \mapsto \begin{cases} \frac{f(x)}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}.$$

— Exercice 15 ••○ **—** Extension de Rolles : se ramener à un segment

1. Soit $f:[a,+\infty[\to \mathbb{R}]$ une fonction dérivable telle que

$$\lim_{x \to +\infty} f(x) = f(a).$$

- **a.** On souhaite définir la fonction g sur]0,1] par $g(x)=f(\frac{1}{x}+a-1)$. Vérifier que cette fonction est bien définie et dérivable. Montrer qu'elle se prolonge par continuité en 0.
- **b.** En déduire qu'il existe $c \in]a, +\infty[$ tel que f'(c) = 0. Quelle est l'idée derrière la fonction q?
- **2.** On suppose maintenant que f est définie sur \mathbb{R} , avec

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x).$$

En introduisant une fonction basée sur le changement de variable $x = \tan t$, avec $x \in \mathbb{R}$, montrer avec des idées similaires que f' s'annule en au moins un point.

— Exercice 16 ••○ — Relation de récurrence

Soit la suite $(u_n)_{n\geq 0}$ définie par

$$\begin{cases} u_{n+1} = 4 - \frac{1}{4}\ln(u_n), \ n \geqslant 0 \\ u_0 = \frac{7}{2}. \end{cases}$$

- **1.** Montrer que pour tout $n \in \mathbb{N}$, on a $u_n \in [3, 4]$.
- 2. Introduire une fonction f de sorte que $u_{n+1} = f(u_n)$, et montrer que f possède un unique point fixe, c'est-à-dire une solution de l'équation f(x) = x, dans l'intervalle [3,4]. On note α ce point fixe.
- 3. Montrer que

$$\forall n \in \mathbb{N}, \quad |u_{n+1} - \alpha| \leqslant \frac{1}{12} |u_n - \alpha|.$$

4. En déduire la convergence de la suite $(u_n)_{n\geqslant 0}$