
PTSI Primitives et équations différentielles linéaires 2025–2026

Chapitre 12 - Primitives et équations
différentielles linéaires

Encore une fois, dans ce chapitre, I désigne un intervalle non vide et non réduit à un point. Nous introduisons une
nouvelle convention : les ensembles R et C sont notés indifférament K. cette convention va nous permettre de donner
des résultats sans énoncer à chaque fois “R ou C” et reviendra dans la suite de l’année.

1 Primitives : Utilité et calcul

1.1 Primitives et liens avec les intégrales

Définition 1 - Primitives d’une fonction continue. Soit une fonction f : I Ñ K continue sur I. On appelle
primitive de f toute fonction F : I Ñ K dérivable vérifiant

F 1 “ f.

Exemple 2 - Quelques exemples.
• Vérifier que la fonction x ÞÑ x2e´x est une primitive de la fonction x ÞÑ xp2´ xqe´x.
• Donner des primitives des fonctions cos et sin.
• Donner des primitives de la fonction x ÞÑ x

2 .

Attention ! Attention : primitiver est BEAUCOUP plus dur que dériver, en particulier on ne peut pas
toujours trouver de formules pour la dérivée d’une fonction. Ne soyez pas naïf en donnant des réponses instantannées
fausses. Nous allons voir des stratégies pour calculer concrêtement une primitive

Il n’y a pas unicité parmi les primitives d’une fonction, mais le résultat suivant montre qu’il est facile de relier les
différentes primitives d’une fonction :

Théorème 3 - Unicité à une constante additive près. Soit une fonction f : I Ñ K continue sur I. Supposons
que l’on connaisse une primitive F de f sur I. Alors les autres primitives de f sont exactement les fonctions F `λ
avec λ P K.

Attention ! Pour cette raison, lorsqu’on a trouvé UNE primitive de f , on évitera de dire LA primitive de
f , puisqu’il y en a une infinité d’autres.

De plus, dans ce théorème, il est important que l’intervalle de définition soit un intervalle. Par exemple, les fonctions
définies sur R˚ par

F1pxq “
1

x
et F2pxq “

$

&

%

1
x ` 1 si x ą 0

1
x si ă 0

vérifient F 11pxq “ F 12pxq “ ´
1
x2 sur R˚, mais elles ne diffèrent pas d’une constante. Le programme se concentre pour

l’instant sur les fonctions définies sur un intervalle.
On introduit une notation pratique et très utilisée mais dure à manipuler :

Notation 4 - Notation de Leibnitz pour une primitive générique. Soit une fonction f : I Ñ K continue sur I. On
note

´
f une primitive de f , ou encore

´ x
fptqdt une primitive de f évaluée en x.
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Cette notation est doublement ambigüe :
• Elle ne désigne pas une fonction particulière, mais une fonction à une constante près. Par exemple

ˆ x

tdt “
x2

2
et
ˆ x

tdt “
x2

2
` 1

• On lira souvent (livres, exercices...) ˆ
x dx “

x2

2
.

Cette notation est maladroite, car la variable x à gauche est muette, mais pas à droite. On fait ici la confusion
entre F et F pxq. Cette confusion peut être tolérée, mais elle peut conduire à des erreurs, prudence !

Attention !
´
f (ou

´ x
fptqdt) ne se lit pas « intégrale de f » mais « une primitive de f » (évaluée en x).

On rappelle que pour une fonction f : I Ñ R donnée, et pour pa, bq P I ˆ I le nombre réel
´ b
a
fptqdt désigne l’aire

algébrique comprise entre l’axe des abscisses et la courbe de f , délimitée par les droites x “ a et x “ b. Un chapitre
sera consacré aux intégrales.

Théorème 5 - Lien entre primitive et intégrale. Soit une fonction f : I Ñ R continue sur I. Soit a P I fixé.
Alors la fonction F : I Ñ K définie sur I par

F : x ÞÑ

ˆ x

a

fptqdt

est l’unique primitive de f qui s’annule en a, c’est-à-dire qu’elle vérifie

F 1 “ f et F paq “ 0.

En particulier, toute fonction continue sur un intervalle admet une primitive.

Ce théorème fait intervenir l’intégrale, qui n’a pas encore été bien définie. On le prouvera au chapitre sur les
intégrales. Pour l’instant, un dessin suffit.

Exemple 6 - Trouver une composée. Donner la dérivée de la fonction définie sur R par

x ÞÑ

ˆ 2x

0

e´3t dt.

Exemple 7 - Utiliser les théorèmes sur la dérivée. Soit f une fonction continue. Déterminer lim
xÑ0

1

x2

ˆ x2

0

fptqdt.

Théorème 8 - Lien entre intégrale et primitive. Soit une fonction f : I Ñ R continue sur I. Soient pa, bq P Iˆ I
fixés. Soit F : I Ñ K une primitive de f . Alors on a

ˆ b

a

fptqdt “ rF ptqsba “ F pbq ´ F paq.

Bien sûr, si on n’a pas déterminé concrêtement une primitive de f (voir sections suivantes), ce théorème ne sert à
rien.

Remarque 9 - Formule numéro 1 de l’analyse. Si on applique ce theorème à une fonction dérivée f 1 (avec f de
classe C1, on obtient le « théorème fondamental » de l’analyse :

ˆ b

a

f 1ptqdt “ fpbq ´ fpaq.
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1.2 Connaître et reconnaître des primitives
Voici différentes méthodes élémentaires pour trouver des primitives « à vue »

Les primitives usuelles Impensable de ne pas les connaître, elles découlent de vos connaissances sur les dérivées.
Voici un tableau (les primitives sont données à une constante près) :

Fonction fpxq primitive F pxq I

1 xα 1
α`1

xα`1

$

’

’

&

’

’

%

R si α P N
s´8 , 0r ou s0 ,`8r si α P Z´
s0 ,`8r sinon

2
1

x
ln |x| s0 ,`8r ou s´8 , 0r

3 eαx 1
α
eαx R

4 ax pa>0q 1
ln a

ˆ ax R

5 chx shx R

6 shx chx R

7 sinx ´ cosx R

8 cosx sinx R

9
1

1` x2
Arctanx R

10 ´ 1?
1´x2

Arccosx s ´ 1, 1r

11
1

?
1´ x2

Arcsinx s ´ 1, 1r

12 fpaxq 1
a
F paxq 1

a
Df : Df dilaté de 1

a

12 fpx` αq F px` αq Df translaté de ´α.
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Reconnaître la dérivée d’une composée On se repose sur la formule pF ˝ uq1 “ u1 ˆ pf ˝ uq. On peut y penser dès
que l’on voit un produit, (ou une fonction de la forme x ÞÑ fpaxq avec a P R fixé, voir ligne 12 précédente). Les plus
communes sont listées dans le tableau suivant, qui n’est finalement qu’une redite du paragraph précédent :

Fonction u1 ˆ pf ˝ uq primitive F ˝ u Condition sur u

1 u1uα 1
α`1

uα`1

$

’

’

&

’

’

%

aucune si α P N
u ă 0 ou u ą 0 si α P Z´
u ą 0 sinon

1 bis
u1
?
u

2
?
u u ą 0

2
u1

u
ln |u| u ă 0 ou u ą 0

3 u1 eu eu

5 u1 chu shu aucune

6 u1 shu chu aucune

7 u1 sinx ´ cosu aucune

8 u1 cosx sinu aucune

9
u1

1` u2
Arctanu R

10 ´ u1
?

1´u2
Arccosu ´1 ă u ă 1

11
u1

?
1´ u2

Arcsinu ´1 ă u ă 1

On peut ajouter le classique suivant, qui en fait est déjà caché dans le tableau ci-dessus :

Exemple 10 - Primitive de la tangente. Calculer une primitive de la fonction tan, en précisant le domaine de
définition.

1.3 Transformer l’intégrale : IPP et changement de variable
Dans cette section on présente deux méthodes pour calculer des primitives, qui consiste à transformer le problème

en espérant en obtenir un plus simple.
Rappelons qu’étant données deux fonctions f et g continues sur un intervalle I, à valeurs dans K, et λ P K, on a

ˆ
f ` g “

ˆ
f `

ˆ
g et

ˆ
pλfq “ λ

ˆ
f.

On dit que “primitiver est une opération linéaire”.

Attention ! ATTENTION. Soient deux fonctions f et g continues sur un intervalle I, et F et G leurs
primitives. ALORS ON N’A PAS

´
fg “ F ˆG en général : la primitive du produit n’a aucune raison d’être le produit

des primitives

Pour palier ce problème, il existe une méthode qui permet de transformer la primitive d’un produit, et que nous
connaissons déjà (voir chapitre 1) :

Proposition 11 - Intégration par parties (IPP). Soient deux fonctions u et v continues et dérivables sur un
intervalle I, ˆ

pu1vq “ uˆ v ´

ˆ
puv1q.

N. Popoff - Lycée les Eucalyptus 4

https://http://www.nicolaspopoff.fr/
https://www.lycee-eucalyptus.fr/


PTSI Primitives et équations différentielles linéaires 2025–2026

Exemple 12 - Intégration par parties (IPP). Donner une primitive de la fonction définie sur R par x ÞÑ xe´2x.

Proposition 13 - Changement de variable. Soit f : I Ñ R continue et ϕ : J Ñ I une fonction de classe C 1.
Soient a et b dans J , alors ˆ b

a

fpϕptqqϕ1ptqdt “

ˆ ϕpbq

ϕpaq

fpuqdu.

Cette formule est dure à décoder, mieux vaut apprendre les différentes étapes pratique :

. En pratique . Pour mettre en place le changement de variable, une fois la fonction ϕ choisie, on prépare le
terrain en “posant” u “ ϕptq, et en transformant l’intégrale selon trois étapes :

• Les bornes.
• L’élément différentiel, qui se trouve en écrivant les choses « à la physicienne » :

du “ ϕ1ptqdt

Sur son brouillon, on peut mélanger les anciennes et nouvelles variables, mais lors de la rédaction, chaque intégrale
ne doit comporter qu’une seule variable !

• La fonction sous le signe intégral : on remplace l’expression en t par une fonction de u. Si on a bien travaillé, la
fonction f est apparu d’elle-même. Si non, on peut “inverser” le changement de variable (ce qui n’est pas toujours
possible !).

En fait, quand on fait un changement de variable dans une intégrale
´ b
a
gptqdt, on a souvent une intérale de la forme

de gauche, sans l’avoir vraiment vue. Faire le changement de variable permet « d’ouvrir les yeux ».

Exemple 14 - Changement de variable. Calculer
´ 2
1

1?
t`t

dt en posant u “
?
t.

Application à la recherche de primitive Le résultat précédent est énoncé pour le calcul d’intégrales. On peut l’ex-
ploiter pour le calcul des primitives, mais l’étape de gestion des bornes doit être adaptée :

Exemple 15 - Changement de variable. Donner une primitive de la fonction définie sur R˚` par t ÞÑ lnptqn

t en posant
u “ ln t.

Attention ! Il y a une très grosse subtilité : on ne peut pas toujours « forcer » un changement de variable
si l’intégrale n’est pas de la forme

´ b
a
fpϕptqqϕ1ptqdt. En particulier :

• Il peut être tentant de faire le changement de variable dans l’autre sens, en posant t “ ψpuq dans une intégrale´ b
a
gptqdt pour une fonction ψ bien choisie. On n’aurait plus qu’à remplacer froidement la variable t par ψpuq,

et dt par ψ1puqdu. Le soucis, c’est que rien ne garantit que ψ renvoie des valeurs dans le domaine de définition
de g, ou dans l’intervalle ra, bs. Par exemple, vous viendrait-il à l’idée de poser t “ u2 dans

´ ´1

´2
gptqdt ?

• On peut aussi essayer de forcer les choses en posant u “ ϕptq dans
´ b
a
gptqdt, mais l’introduction artificelle du

facteur ϕ1ptq risque de poser des soucis. Essayez donc de poser u “ sin t dans
´ π
0

sin tdt. Un soucis intervient au
niveau des bornes. Si on avait voulu forcer le facteur différentiel cos tdt à apparaître, on aurait eu :

ˆ π

0

sin tdt “

ˆ π

0

sin t

cos t
cos tdt,

et là on voit le soucis : la fonction t ÞÑ sin t
cos t n’est pas définie en π

2 .
Heureusement au programme, on se contente de cas “qui marchent”... mais retenez que la situation peut très vite se
compliquer.
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1.4 Transformer la fonction
Les fractions rationnelles Les fractions rationnelles sont les quotients de polynômes. Nous aurons un chapitre consacré
à ces objets, pour l’instant on s’intéresse au cas des fonctions du type

f : x ÞÑ
1

ax2 ` bx` c
.

On cherche à factoriser, ou bien écrire sous forme canonique le dénominateur, selon le signe du discriminant
∆ “ b2 ´ 4ac

• Si ∆ ą 0

‹ On sait qu’il existe deux racines r´ et r` au trinôme x ÞÑ ax2 ` bx ` c, que l’on calcule. On a donc
ax2 ` bc` c “ apx´ r´qpx´ r`q.

‹ On cherche deux constantes α et β réelles telles que

1

ax2 ` bx` c
“

1

apx´ r´qpx´ r`q
“

α

x´ r´
`

β

x´ r`
.

La méthode la plus efficace est de multiplier le tout par px´ r´q puis évaluer en x “ r´ (et la même chose
avec r`). On peut aussi mettre au même dénominateur et identifier, mais il y a un système 2ˆ2 à résoudre.

‹ On conlut en utilisant
´ x dt

t´r “ ln |x´ r|.
• Si ∆ ă 0, le trinôme ne peut être factorisé sur R.

‹ On cherche sa forme canonique (voir chapitre 4) en trouvant des constantes α et β telles que

1

ax2 ` bx` c
“

1

apx` αq2 ` β2
.

‹ On travaille un peu pour se ramener à
´

1
u2`1 du (changement de variable v “ x ` α puis u “

?
a
β v) et on

utilise la fonction Arctan. Bien sûr, on doit concrêtement calculer toutes ces constantes...
• Si ∆ “ 0, il y a une unique racine r P R que l’on calcule, et

1

ax2 ` bx` c
“

1

apx´ rq2
.

La primitive est ´ 1
apx´rq

• Et avec un numérateur ?
‹ si c’est une fonction affine, on peut commencer à faire apparaître la dérivée 2ax` b du dénominateur.
‹ Si c’est un polynôme plus élevé, on essaye quelques techniques de magie, par exemple

x2

1` x2
“
x2 ` 1´ 1

1` x2
“ 1´

1

1` x2
.

Nous généraliserons ces techniques au chapitre dédié.

Exemple 16 - Primitives de fractions rationnelles.
1. Calculer une primitive de la fonction x ÞÑ x

x2`x`1 , en précisant l’ensemble de définition.

2. Calculer une primitive de la fonction x ÞÑ x2

x2´1 , en précisant l’ensemble de définition.

Expo et trigo : en passant par les exponentielles complexes On cherche à calculer les primitives des fonctions
définies sur R par

x ÞÑ cospaxqebx et x ÞÑ sinpaxqebx avec a P R et b P R.

On pourrait penser que l’IPP est naturelle (et d’ailleurs elle fonctionne), mais il existe une méthode plus directe :
passer par les complexes : on rattache cosinus et sinus à une exponentielle complexe (ou, on utilise les formules
d’Euler, ce qui revient au même) :

cospaxqebx “ Repeiax`bxq et sinpaxqebx “ Impeiax`bxq.

Or ˆ x

eiat`bt dt “

ˆ x

epia`bqt dt “
1

ia` b
epia`bqx.

Il n’y a plus qu’à calculer la forme algébrique, et récupérer les parties réelles et imaginaires.
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Attention ! Les règles de primitives chez les complexes passent toujours par les parties réelles et imaginaires.
Ainsi, ne tentez pas d’écrire ˆ x dt

t´ i
“ lnpx´ iq,

mais calculez les parties réelles et imaginaires de x ÞÑ 1
x´i avec la technique du conjugué.

2 Equations différentielles linéaires
On revient sur l’étude des équations différentielles linéaires. On rappelle la méthode générale :
• On associe l’équation homogène, que l’on résout avec les méthodes du cours.
• On cherche une solution particulière de l’équation inititiale.
• On utilise le théorème de superposition.

Nous allons approfondir ces méthodes.

2.1 Equations différentielles linéaires d’ordre 1
On a résolu lors du premier chapitre des équations de la forme

y1pxq ` aypxq “ bpxq,

où a P R est une constante, b une fonction donnée, et y est une fonction inconnue. Vous vous souvenez de la méthode
de résolution ? Nous allons nous attaquer à un cran de difficulté supplémentaire en étudiant où le coefficient a n’est
plus un nombre fixé mais une fonction.

Théorème 17 - Equadiff homogène d’ordre 1. Soit a : I Ñ R une fonction continue. On s’intéresse à l’équation
différentielle linéaire homogène d’ordre 1

@x P I, y1pxq ` apxqypxq “ 0. (1)

Soit A : I Ñ R une primitive de a. Les solutions de cette équations sont exactement les fonctions de la forme

ypxq “ λe´Apxq avec λ P R.

Notation 18 - Equadiff homogène d’ordre 1. On peut aussi dire : l’ensemble des solutions de y1 ` ay “ 0 est

tx ÞÑ λe´Apxq, λ P Ru.

En pratique, il faut donc être capable de trouver une primitive de la fonction a pour résoudre une équation
homogène. Les primitives diffèrent d’une constante, mais on peut noter que si on remplace A par A`K avec K P R,
alors λe´A devient λe´Ke´A “ λ1e´A : la constante de primitivation est absorbée par celle devant l’exponentielle,
ouf !

Notez que la fonction nulle est toujours solution d’une équation homogène.

Exemple 19 - Une équation homogène. Résoudre sur R l’équation différentielle

@x P R, y1pxq “ xypxq.

On rappelle le principe de superposition :

Théorème 20 - Théorème de superposition. Soit a : I Ñ R et b : I Ñ R deux fonctions continues. On s’intéresse
à l’équation différentielle linéaire homogène d’ordre 1

@x P I, y1pxq ` apxqypxq “ bpxq.

Supposons que l’on connaisse une solution particulière, notée yp. Alors l’ensemble des solutions est
 

yp ` yh, yh solution de l’équation homogène associée (1)
(

Il reste à trouver une solution particulière. L’idée de chercher « au nez » une fonction qui a la même forme que b
reste valide, mais les choses peuvent se compliquer avec la fonction a. Il y a deux idées nouvelles :
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Superposition des solutions particulières C’est l’idée qui permet de décomposer le problème.

Proposition 21 - Superposition des solutions particulières. Supposons qu’on regarde un équation différentielle
dont le second membre est une somme de fonctions :

@x P I, y1pxq ` apxqypxq “
n
ÿ

k“1

bkpxq.

Soit yk une solutions particulière de l’équation différentielle

@x P I, y1pxq ` apxqypxq “ bk.

Alors la fonction
řn
k“1 yk est solution particulière de l’équation différentielle

@x P I, y1pxq ` apxqypxq “
n
ÿ

k“1

bkpxq.

Exercice 22 - Superposition de solutions particulières. Trouver une solution particulière à l’équation différentielle

y1pxq ` ypxq “ cosx` e2x.

La méthode de la variation de la constante C’est l’idée générique. Soient a et b deux fonctions continues sur un
intervalle I. Considérons une équation différentielle avec second membre

@x P I, y1pxq ` apxqypxq “ bpxq. (2)

On sait que la solution de l’équation homogène associée est de la forme

yhpxq “ λe´Apxq avec λ P R et A “

ˆ
a.

Théorème 23 - Méthode de variation de la constante. La méthode de la variation de la constante consiste à
chercher une solution particulière de (2) sous la forme

yppxq “ λpxqe´Apxq, avec λ : I Ñ R une fonction inconnue.

Elle aboutit et passe par un calcul de primitive.

. En pratique . Par « elle aboutit », on entend que la preuve est constructive et est à répeter (voir prise de notes).
On trouve que la fonction candidate est solution si et seulement si

λ1pxq “ bpxqeApxq,

encore un fois on est devant un calcul de primitive qu’il faut mener à bien.

Exemple 24 - Exemple de variation de la constante. Trouver une particulière pour l’équation différentielle

@x P R, y1pxq ´ 2xypxq “ ex
2
`x

Exemple 25 - En combinant les deux méthodes. Trouver une solution particulière de l’équation

@x Ps ´ 1,`8r, y1pxq ´
1

1` x
ypxq “

1

1` x
`

lnp1` xq

1` x
.

En déduire l’ensemble des solutions.
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Définition-théorème 26 - Problème de cauchy et théorème de Cauchy-Lipschitz. Soient a et b deux fonctions
continues sur un intervalle I. Fixons t0 P I et y0 P R. Alors on appelle problème de Cauchy le système

"

y1pxq ` apxqypxq “ bpxq,
ypx0q “ y0,

d’inconnue une fonction y : I Ñ R. La deuxième ligne du système est parfois appelée « condition initiale ».

Théorème de Cauchy-Lipschitz : Il existe une unique solution au problème de Cauchy ci-dessus.

. En pratique . Bien que ce théorème garantisse l’existence d’une solution, en pratique on doit souvent résoudre
le problème (avec toutes les étapes décrites ci-dessus). La condition initiale sert à souvent à déterminer la valeur de la
constante apparaissant dans la solution.

Exemple 27 - Résolution complète d’un problème de cauchy. Transformer en un problème de Cauchy, puis résoudre
le problème

"

xy1pxq ` ypxq “ x2ex sur s0,`8r
yp1q “ 1

d’inconnue y :s0,`8rÑ R.

Méthode d’Euler Il s’agit d’une méthode numérique pour approcher les solutions d’une équation différentielle à
l’aide de l’outil informatique.

Avant de se lancer, il est essentiel de comprendre comment sont perçues les notions d’intervalle et de fonction pour
la plupart des langage de programmation. Un intervalle est souvent modélisé par une discrétisation, c’est à dire qu’il
est approché par une suite finie de points, par exemple

r0, 1s «
discrétisation

t0, 0.1, . . . , 0.9, 1u.

Dans cet exemple, on parle de discrétisation régulière, avec un pas de 0.1 “ 1
10 , qui consiste à découper l’intervalle en

10 (et donc avec 11 points de discrétisation). Pour approcher une fonction f : I Ñ R, on va discrétiser ses valeurs.
Ainsi pour approcher son graphe G “ tpx, fpxqq P R2, x P Iu, dans notre exemple on obtient :

G «
discrétisation

tp0, fp0qq, p0.1, fp0.1qq, . . . , p0.9, fp0.9qq, p1, fp1qu.

Il ne reste plus qu’à relier ces points pour obtenir une approximation du graphe de f . Plus le pas est petit, plus la
discrétisation a des chances d’être fidèle (enfin, cela dépend tout de même des variations de la fonction f . . . ).

La méthode d’Euler est un algorithme qui permet d’approcher les valeurs d’une fonction y solution d’une équation
différentielle, même si on n’a pas réussi à résoudre cette équation différentielle.

Supposons que l’on s’intéresse à un problème de Cauchy
"

y1pxq ` apxqypxq “ bpxq,
ypx0q “ y0

(3)

sur un intervalle rx0, xf s.
On se donne N P N, et une discrétisation pxkqk“0,...,N de rx0, xf s, avec un pas h, c’est-à-dire que

xk`1 “ xk ` h.

Imaginons que l’on a déjà approché des valeurs de la solution jusqu’à ypxkq. La clef de la méthode d’Euler est d’écrire

y1pxkq «
ypxk`1q ´ ypxkq

h
.

Or puisque y est solution de l’équation différentielle, y1pxkq est connue. On déduit la relation

ypxk`1q « ypxkq ` h pbpxkq ´ apxkqypxkqq .

On peut ainsi construire les valeurs approchées de pypxkqqk“0,...,N de proche en proche.
Voici l’algorithme en python :
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Algorithm 1 Méthode d’Euler pour résoudre (3)
Entrées : Deux fonctions a et b, deux réels x0 ă xf , un entier N , une valeur initiale y0
Sorties : Un graphe, et un vecteur « fonction » des valeurs approchées de la solution discrétisée

1 h “ pxf ´ x0q{floatpNq
2 x “ x0
3 y “ x0
4 pour i in range(N) faire
5 y “ y ` h pbpxq ´ apxqyq
6 x “ x` h
7 temps.append(x)
8 fonction.append(y)

9 plt.plot(temps,fonction)
10 return fonction

2.2 Equations Linéaires d’ordre 2
Nous allons passer rapidement sur les résultats déjà vus au chapitre 1, mais en utilisant cette fois-ci notre connais-

sance des exponentielles complexes :
On rappelle qu’une équation différentielle linéaire d’ordre 2 à coefficients constants est de la forme

y2pxq ` by1pxq ` cypxq “ fpxq. (4)

Ici, f est une fonction donnée continue, a, b et c trois coefficients complexes ou réels, et y une fonction inconnue.
On commence par étudier l’équation homogène

y2pxq ` by1pxq ` cypxq “ 0 (5)

et l’équation caractéristique associée :
r2 ` br ` c “ 0 (6)

d’inconnue r P C.
On a vu au chapitre 1 quelles sont les solutions lorsque les coefficients sont réels (à revoir). Maintenant on étudie

le cas complexe, qui englobe le cas réel :

Théorème 28 - Résolution de l’équation homogène, cas complexe. Les solutions de (5) dépendent du
discriminant ∆ “ b2 ´ 4c de l’équation caractéristique (6) :

• Si ∆ ‰ 0, l’équation caractéristique a deux solutions distinctes complexes, appelées racines, notées r1 et r2.
Les solutions de (5) sont de la forme

ypxq “ λer1x ` µer2x,

où λ P C et µ P C sont deux constantes.
• Si ∆ “ 0, l’équation caractéristique a une seule solution complexe, appelée racine double, notée r. Les
solutions de (5) sont de la forme

ypxq “ pλ` µxqerx,

où λ P C et µ P C sont deux constantes.

En fait, ce théorème englobe le cas déjà vu où a, b et c sont réels :
• Si ∆ ě 0, les formules sont les mêmes que dans le cas réels.
• Si ∆ ă 0, on écrit

r1 “ α´ iβ et r2 “ α` iβ avec pα, βq P R2.

On a alors
λer1x ` µer2x “ pA cospβxq `B sinpβxqq eαx

Les formules d’Euler permettent de relier pA,Bq et pλ, µq.
Les différents principes de superposition, déjà vus au chapitre 1 et dans ce chapitre pour les équations différen-

tielles d’ordre 1, restent vrais. Ainsi pour résoudre l’équation avec second membre (4), il reste à trouver une solution
particulière.
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Stratégie pour la solution particulière . Nous nous concentrons sur les formes suivantes du second membre f :
• Si f est de la forme fpxq “ eωx avec ω P C fixé, alors

‹ Si ω n’est pas solution de l’équation caractéristique, on cherche yp sous la forme αeωx avec α P C à trouver.
‹ Si ω est racine simple de l’équation caractéristique, on cherche yp sous la forme αxeωx avec α P C à trouver.
‹ Si ω est racine double de l’équation caractéristique, on cherche yp sous la forme αx2eωx avec α P C à trouver.

• Pour le cas à coefficients réels, Si f est de la forme fpxq “ A cospωxq `B sinpωxq avec ω P C fixé, alors
‹ Si iω n’est pas solution de l’équation caractéristique, on cherche yp sous la forme α1 cospωxq ` α2 sinpωxq.
‹ Si iω est racine (forcément simple), on cherche yp sous la forme αx cospωxq ` βx sinpωxq.

• Si f est un polynôme de degré n, fpxq “ Pnpxq :
‹ Si c ‰ 0, on cherche yp sous la forme d’un polynôme de degré n.
‹ Si c “ 0 et b ‰ 0, on cherche yp sous la forme d’un polynôme de degré n` 1.
‹ Si b “ c “ 0, on doit juste primitiver deux fois Pn.

N’oubliez pas les différents outils pour transformer des fonctions trigonométriques : formules d’Euler pour se ramener
à des exponentielles complexes, linéarisation pour transformer les puissances de fonctions trigonométriques.

Exemple 29 - Des solutions exponentielles. Résoudre

@x P R, 2y2pxq ` 3y1pxq ´ 5ypxq “ 5e3x ` e´2x ` 3x.

Exemple 30 - Des solutions réelles ou complexes. Résoudre

@x P R, y2pxq ` ypxq “ pcosxq3 ´ x2.

On présentera des solutions sous la forme complexes puis réelles.

Pour aller plus loin (HP) Si le second membre est de la forme fpxq “ Pnpxqe
ωx où Pn est un polynôme de degré n,

on cherche yp sous la forme

yppxq “ Qne
ωx, avec

$

’

&

’

%

degQn “ n si ω n’est pas racine de l’équation caractéristique
degQn “ n` 1 si ω est racine simple de l’équation caractéristique
degQn “ n` 2 si ω est racine double de l’équation caractéristique

Dans tous les cas, si on a oublié cette méthode, on pourra toujours chercher yp sous la forme Qnpxqeωx en injectant
dans l’équation différentielle et trouver une équation sur Qn.

Définition-théorème 31 - Problème de cauchy et théorème de Cauchy-Lipschitz. Soient b et c deux complexes,
et f : I Ñ R continue. Fixons x0 P I, ainsi que y0 P C et y1 P C. Alors on appelle problème de Cauchy le système

$

&

%

y2pxq ` by1pxq ` cypxq “ fpxq
ypx0q “ y0
y1px0q “ y1

,

d’inconnue une fonction y : I Ñ R.

Théorème de Cauchy-Lipschitz : Il existe une unique solution au problème de Cauchy ci-dessus.

. En pratique . Dans la résolution d’une équation différentielle d’ordre deux apparaissent deux constantes (on les
a appelées λ et µ). Si on veut vérifier les deux conditions initiales, cela fournit un système de deux équations à deux
inconnues.

Le théorème de Cauchy-Lipschitz est très clair en cinématique : la loi de Newton fournit en générale une équation
sur l’accélération, donc une équation d’ordre deux sur la position. Si on préscrit la position et la vitesse initiale, on
peut déterminer de manière exacte la trajectoire de l’objet en mouvement.
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