PTSI Primitives et équations différentielles linéaires 2025—2026

Chapitre 12 - Primitives et équations
différentielles linéaires

Encore une fois, dans ce chapitre, I désigne un intervalle non vide et non réduit & un point. Nous introduisons une
nouvelle convention : les ensembles R et C sont notés indifférament K. cette convention va nous permettre de donner
des résultats sans énoncer a chaque fois “R ou C” et reviendra dans la suite de 'année.

1 Primitives : Utilité et calcul

1.1 Primitives et liens avec les intégrales

Définition 1 - Primitives d’une fonction continue. Soit une fonction f : I — K continue sur I. On appelle
primitive de f toute fonction F' : I — K dérivable vérifiant

F = f.

Exemple 2 - Quelques exemples.

2

e Vérifier que la fonction x — x?e~* est une primitive de la fonction = — (2 — x)e™?.

e Donner des primitives des fonctions cos et sin.

e Donner des primitives de la fonction x — 3.

¥ ArTENTION ! & Attention : primitiver est BEAUCOUP plus dur que dériver, en particulier on ne peut pas
toujours trouver de formules pour la dérivée d’une fonction. Ne soyez pas naif en donnant des réponses instantannées
fausses. Nous allons voir des stratégies pour calculer concrétement une primitive

Il n’y a pas unicité parmi les primitives d’une fonction, mais le résultat suivant montre qu’il est facile de relier les
différentes primitives d’une fonction :

Théoréme 3 - Unicité a une constante additive prés.  Soit une fonction f : I — K continue sur I. Supposons
que 'on connaisse une primitive F' de f sur I. Alors les autres primitives de f sont exactement les fonctions F' + A
avec A € K.

X ArTENTION ! ®  Pour cette raison, lorsqu’on a trouvé UNE primitive de f, on évitera de dire LA primitive de
f, puisqu’il y en a une infinité d’autres.

De plus, dans ce théoréme, il est important que I'intervalle de définition soit un intervalle. Par exemple, les fonctions
définies sur R* par
1 141 siz>0
Fi(x) == et Fy(z) =
r % si <0

vérifient F|(z) = Fi(z) = —112 sur R*, mais elles ne différent pas d’une constante. Le programme se concentre pour
Iinstant sur les fonctions définies sur un intervalle.
On introduit une notation pratique et trés utilisée mais dure & manipuler :

Notation 4 - Notation de Leibnitz pour une primitive générique. Soit une fonction f : I — K continue sur 7. On
note [ f une primitive de f, ou encore [ * f(t) dt une primitive de f évaluée en .
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Cette notation est doublement ambigiie :

e Elle ne désigne pas une fonction particuliére, mais une fonction & une constante prés. Par exemple

T 2 x 2
tdt =2 ot [ tdt=2 41
2 2
2
/xdxzx—.
2

Cette notation est maladroite, car la variable z & gauche est muette, mais pas a droite. On fait ici la confusion
entre F' et F(x). Cette confusion peut étre tolérée, mais elle peut conduire a des erreurs, prudence!

Attention! [ f (ou [* f(t)dt) ne se lit pas « intégrale de f » mais « une primitive de f » (évaluée en ).

e On lira souvent (livres, exercices...)

On rappelle que pour une fonction f : I — R donnée, et pour (a,b) € I x I le nombre réel f; f(¢) dt désigne laire

algébrique comprise entre l'axe des abscisses et la courbe de f, délimitée par les droites © = a et x = b. Un chapitre
sera consacré aux intégrales.

Théoréme 5 - Lien entre primitive et intégrale.  Soit une fonction f : I — R continue sur I. Soit a € I fixé.
Alors la fonction F': I — K définie sur I par

F;xH/;f(t)dt

est I'unique primitive de f qui s’annule en a, c’est-a-dire qu’elle vérifie

F'=f et F(a)=0.

En particulier, toute fonction continue sur un intervalle admet une primitive.

Ce théoréme fait intervenir 'intégrale, qui n’a pas encore été bien définie. On le prouvera au chapitre sur les
intégrales. Pour I'instant, un dessin suffit.

Exemple 6 - Trouver une composée. Donner la dérivée de la fonction définie sur R par

2x
xn—»/ e 3t dt.
0

Exemple 7 - Utiliser les théorémes sur la dérivée.  Soit f une fonction continue. Déterminer li

1
tim /O F(#)dt.

Théoréme 8 - Lien entre intégrale et primitive.  Soit une fonction f : I — R continue sur I. Soient (a,b) € I x I
fixés. Soit F': I — K une primitive de f. Alors on a

b
[ #ae=[ra - Fo) - Fla)

Bien str, si on n’a pas déterminé concrétement une primitive de f (voir sections suivantes), ce théoréme ne sert a
rien.

Remarque 9 - Formule numéro 1 de I'analyse. Si on applique ce theoréme & une fonction dérivée f’ (avec f de
classe C!, on obtient le « théoréme fondamental » de 'analyse :

b
/ () dt = £(b) - f(a).
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1.2 Connaitre et reconnaitre des primitives

Voici différentes méthodes élémentaires pour trouver des primitives « & vue »

Les primitives usuelles Impensable de ne pas les connaitre, elles découlent de vos connaissances sur les dérivées.

Voici un tableau (les primitives sont données 4 une constante prés) :

Fonction f(x) primitive F'(z) I
R siaeN
1 z %HIEQH ]—00,0[ ou ]0,+00[ sia€eZ-
10, +oof sinon

1
2 p In|z| 10, +o[ ou ]—0,0[
3 e™” Lo R
4 a® (a>0) = xa® R
5 chz shz R
6 shx chz R
7 sinx —cosT R
8 cosx sinzx R

1
9 Arctanz R

1+ a2

10 -1 Arccosz 1-1,1]

1—z2
11 L Arcsinz 1-1,1]

V1 —a? ’

12 f(ax) LF(az) 1Dy : Dy dilaté de +
12 flz+ a) F(z + a) Dy translaté de —a.
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Reconnaitre la dérivée d’'une composée On se repose sur la formule (F ow) = v x (f ou). On peut y penser dés
que l'on voit un produit, (ou une fonction de la forme x — f(az) avec a € R fixé, voir ligne 12 précédente). Les plus
communes sont listées dans le tableau suivant, qui n’est finalement qu’'une redite du paragraph précédent :

Fonction u’ x (f ow) | primitive F ou Condition sur u
aucune siaeN
1 uw'u® —uttt u<Oouu>0 siaeZ_
u >0 sinon
!
u
1 bis — 23/u u >0
Vu
u/
2 — In |u| u<0ouu>0
u
3 u' e e
5 u' chu shu aucune
6 u'shu chu aucune
7 u'sinz —cosu aucune
8 u' cosx sinu aucune
u/
9 Arctan u R
1+ u?
1 - A ~l<u<l1
0 it Iccos u U
11 u Arcsinu l<u<l1
V1—u?
On peut ajouter le classique suivant, qui en fait est déja caché dans le tableau ci-dessus :
Exemple 10 - Primitive de la tangente. Calculer une primitive de la fonction tan, en précisant le domaine de
définition.

1.3 Transformer I'intégrale : IPP et changement de variable

Dans cette section on présente deux méthodes pour calculer des primitives, qui consiste & transformer le probléme
en espérant en obtenir un plus simple.
Rappelons qu’étant données deux fonctions f et g continues sur un intervalle I, & valeurs dans K, et A € K, on a

[t+a=[r+[ae [on=a]r

On dit que “primitiver est une opération linéaire”.

® ArreEnTION ! &  ATTENTION. Soient deux fonctions f et g continues sur un intervalle I, et F et G leurs
primitives. ALORS ON N’A PAS [ fg = F x G en général : la primitive du produit n’a aucune raison d’étre le produit
des primitives

Pour palier ce probléme, il existe une méthode qui permet de transformer la primitive d’un produit, et que nous
connaissons déja (voir chapitre 1) :

Proposition 11 - Intégration par parties (IPP). Soient deux fonctions u et v continues et dérivables sur un

intervalle I,
/(u'v) =uXv— /(uv').
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Exemple 12 - Intégration par parties (IPP). Donner une primitive de la fonction définie sur R par x — ze™ 27,

Proposition 13 - Changement de variable.  Soit f : I — R continue et ¢ : J — I une fonction de classe €.
Soient a et b dans J, alors

b ©(b)
/ Fo(®)g () dt = / F(u) du.
a v(a)

Cette formule est dure & décoder, mieux vaut apprendre les différentes étapes pratique :

% En pratique & Pour mettre en place le changement de variable, une fois la fonction ¢ choisie, on prépare le
terrain en “posant” u = ¢(t), et en transformant l'intégrale selon trois étapes :

e Les bornes.

e [’élément différentiel, qui se trouve en écrivant les choses « a la physicienne » :
du = ¢'(t)dt

Sur son brouillon, on peut mélanger les anciennes et nouvelles variables, mais lors de la rédaction, chaque intégrale
ne doit comporter qu'une seule variable !

e La fonction sous le signe intégral : on remplace I'expression en t par une fonction de u. Si on a bien travaillé, la
fonction f est apparu d’elle-méme. Si non, on peut “inverser” le changement de variable (ce qui n’est pas toujours
possible!).

En fait, quand on fait un changement de variable dans une intégrale ff g(t) dt, on a souvent une intérale de la forme
de gauche, sans ’avoir vraiment vue. Faire le changement de variable permet « d’ouvrir les yeux ».

Exemple 14 - Changement de variable.  Calculer ff ﬁ dt en posant u = /.

Application a la recherche de primitive Le résultat précédent est énoncé pour le calcul d’intégrales. On peut 'ex-
ploiter pour le calcul des primitives, mais ’étape de gestion des bornes doit étre adaptée :

Exemple 15 - Changement de variable. Donner une primitive de la fonction définie sur R¥ par t — %
u = Int.

en posant

R ArTENTION ! ® 11y a une trés grosse subtilité : on ne peut pas toujours « forcer » un changement de variable
si intégrale n’est pas de la forme f: flo()¢'(t) dt. En particulier :
o Il peut étre tentant de faire le changement de variable dans l'autre sens, en posant ¢ = 1(u) dans une intégrale

f: g(t) dt pour une fonction ¢ bien choisie. On n’aurait plus qu’a remplacer froidement la variable ¢ par ¢ (u),
et dt par ¢'(u) du. Le soucis, c’est que rien ne garantit que 1 renvoie des valeurs dans le domaine de définition

de g, ou dans l'intervalle [a, b]. Par exemple, vous viendrait-il & I'idée de poser t = u? dans f:; g(t)dt?

e On peut aussi essayer de forcer les choses en posant u = ¢(t) dans f: g(t) dt, mais I'introduction artificelle du
facteur ¢’ (¢) risque de poser des soucis. Essayez donc de poser u = sint dans fo7r sintdt. Un soucis intervient au
niveau des bornes. Si on avait voulu forcer le facteur différentiel cost dt a apparaitre, on aurait eu :

i T sint
/ sintdt = / —— costdt,
0 o cost

et 1a on voit le soucis : la fonction ¢ — z;’;’; n’est pas définie en 7.
Heureusement au programme, on se contente de cas “qui marchent”... mais retenez que la situation peut trés vite se
compliquer.
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1.4 Transformer la fonction

Les fractions rationnelles Les fractions rationnelles sont les quotients de polynémes. Nous aurons un chapitre consacré
a ces objets, pour I'instant on s’intéresse au cas des fonctions du type

1
ar? +br +c’

frxm—

On cherche a factoriser, ou bien écrire sous forme canonique le dénominateur, selon le signe du discriminant
A =b? — dac
e SiA>0
* On sait qu’il existe deux racines r_ et r, au trindme x — ax? + bz + ¢, que 'on calcule. On a donc
az? +be+c=alr—r_)(z —ry).

* On cherche deux constantes « et 3 réelles telles que

1 1
o« B

az2+br+c alr—r )rx—ry) -1 T—7T4

La méthode la plus efficace est de multiplier le tout par (z — r_) puis évaluer en z = r_ (et la méme chose
avec 74 ). On peut aussi mettre au méme dénominateur et identifier, mais il y a un systéme 2 x 2 & résoudre.

T dt

= =Injz—r|

» On conlut en utilisant [
e Si A <0, le trindbme ne peut étre factorisé sur R.

* On cherche sa forme canonique (voir chapitre 4) en trouvant des constantes a et (3 telles que

1 1

az2 +br+c  alr+a)?+p2

a

of

» On travaille un peu pour se ramener & [ U%H du (changement de variable v = z + « puis u = 3 v) et on

utilise la fonction Arctan. Bien str, on doit concrétement calculer toutes ces constantes...

e Si A =0, il y a une unique racine r» € R que l'on calcule, et

1 1

ax? +br+c  alx—r)?

La primitive est ————

a(x—r)

¢ Et avec un numérateur ?
* si c’est une fonction affine, on peut commencer & faire apparaitre la dérivée 2ax + b du dénominateur.

* Si c’est un polynome plus élevé, on essaye quelques techniques de magie, par exemple

x? 2+1-1 1

1+22 1+22  1+z2

Nous généraliserons ces techniques au chapitre dédié.

Exemple 16 - Primitives de fractions rationnelles.

1. Calculer une primitive de la fonction = — en précisant I’ensemble de définition.

__z
r24x+17

2. Calculer une primitive de la fonction = +— wf—il, en précisant ’ensemble de définition.

Expo et trigo : en passant par les exponentielles complexes On cherche & calculer les primitives des fonctions

définies sur R par
ebz bz

x — cos(ax) et = — sin(ax)e™ avec a€Ret beR.

On pourrait penser que I'IPP est naturelle (et d’ailleurs elle fonctionne), mais il existe une méthode plus directe :
passer par les complexes : on rattache cosinus et sinus a une exponentielle complexe (ou, on utilise les formules
d’Euler, ce qui revient au méme) :

bx

law+b2) ot sin(az)e® = Im(e

cos(az)e’® = Re(e laztbry

/w piat+bt gy _ /w Qlatv)t gy — L Gatb)a
ia+b

Il n’y a plus qu’a calculer la forme algébrique, et récupérer les parties réelles et imaginaires.
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¥ ATTENTION ! 8 Les régles de primitives chez les complexes passent toujours par les parties réelles et imaginaires.
Ainsi, ne tentez pas d’écrire
[ -
= In(z — 1),
t—i

mais calculez les parties réelles et imaginaires de = — ﬁ avec la technique du conjugué.

2 Equations différentielles linéaires

On revient sur I'étude des équations différentielles linéaires. On rappelle la méthode générale :
e On associe I’équation homogéne, que ’on résout avec les méthodes du cours.
e On cherche une solution particuliére de ’équation inititiale.
e On utilise le théoréme de superposition.
Nous allons approfondir ces méthodes.

2.1 Equations différentielles linéaires d’ordre 1
On a résolu lors du premier chapitre des équations de la forme

y'(x) + ay(x) = b(x),

ol a € R est une constante, b une fonction donnée, et y est une fonction inconnue. Vous vous souvenez de la méthode
de résolution 7 Nous allons nous attaquer & un cran de difficulté supplémentaire en étudiant ou le coefficient a n’est
plus un nombre fixé mais une fonction.

Théoréme 17 - Equadiff homogéne d’ordre 1.  Soit a : I — R une fonction continue. On s’intéresse a 1’équation
différentielle linéaire homogéne d’ordre 1

Veel, o' (z)+alx)y(x)=0. (1)
Soit A : I — R une primitive de a. Les solutions de cette équations sont exactement les fonctions de la forme

y(z) = e @) avec A e R.

Notation 18 - Equadiff homogéne d’ordre 1.  On peut aussi dire : ’ensemble des solutions de 3’ + ay = 0 est

{z — Ae @) X e R}.

En pratique, il faut donc étre capable de trouver une primitive de la fonction a pour résoudre une équation
homogeéne. Les primitives différent d’une constante, mais on peut noter que si on remplace A par A + K avec K € R,
alors Ae™4 devient e 7 Ke™4 = Ne~4 : la constante de primitivation est absorbée par celle devant 1’exponentielle,
ouf!

Notez que la fonction nulle est toujours solution d’une équation homogéne.

Exemple 19 - Une équation homogéne. Résoudre sur R I’équation différentielle
VreR, o (z)=zy(z).

On rappelle le principe de superposition :

Théoréme 20 - Théoréme de superposition. Soita: I — Ret b: I — R deux fonctions continues. On s’intéresse
a I’équation différentielle linéaire homogéne d’ordre 1

Veel, y'(z)+a(z)y(x)=>b(z).
Supposons que I'on connaisse une solution particuliére, notée y,. Alors I’ensemble des solutions est

{y» + yn, yn solution de I'équation homogene associée (1)}

Il reste & trouver une solution particuliére. L’idée de chercher « au nez » une fonction qui a la méme forme que b
reste valide, mais les choses peuvent se compliquer avec la fonction a. Il y a deux idées nouvelles :
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Superposition des solutions particulieres C’est 'idée qui permet de décomposer le probléme.

Proposition 21 - Superposition des solutions particuliéres.  Supposons qu’on regarde un équation différentielle
dont le second membre est une somme de fonctions :

Veel, y(x)+a(@)y(z) = ), bi(e).
k=1

Soit gy une solutions particuliére de ’équation différentielle
Veel, y'(z)+a(z)y(z) = bg.

Alors la fonction Y};'_; yx est solution particuliere de 'équation différentielle

Vrel y(@)+a@y) - Y bila)
k=1

Exercice 22 - Superposition de solutions particuliéres. Trouver une solution particuliére a I’équation différentielle
v (2) + y(x) = cosz + **.

La méthode de la variation de la constante C’est I'idée générique. Soient a et b deux fonctions continues sur un
intervalle I. Considérons une équation différentielle avec second membre

Veel, o (z)+alx)ylz)=>0(z). (2)

On sait que la solution de I’équation homogéne associée est de la forme

yn(x) = Xe @) avec AeR et A= /a.

Théoréme 23 - Méthode de variation de la constante.  La méthode de la variation de la constante consiste a
chercher une solution particuliére de (2) sous la forme

yp(x) = AMx)e @ avec A: I — R une fonction inconnue.

Elle aboutit et passe par un calcul de primitive.

2 En pratique & Par «elle aboutit », on entend que la preuve est constructive et est a répeter (voir prise de notes).
On trouve que la fonction candidate est solution si et seulement si

encore un fois on est devant un calcul de primitive qu’il faut mener & bien.

Exemple 24 - Exemple de variation de la constante. Trouver une particuliére pour ’équation différentielle

VzeR, ' (z)—2xy(z)= er Tt

Exemple 25 - En combinant les deux méthodes.  Trouver une solution particuliére de ’équation

1 1 In(1 + z)

Vo E] - 1a +OO[7 yl(x) - y(.l?) = 1+ 1+

En déduire ’ensemble des solutions.
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Définition-théoréme 26 - Probléme de cauchy et théoréme de Cauchy-Lipschitz. Soient a et b deux fonctions
continues sur un intervalle I. Fixons tg € I et yg € R. Alors on appelle probléme de Cauchy le systéme

{ y'(2) +a(z)y(z) = b(x),

y(ﬂ«”o) = Yo,

d’inconnue une fonction y : I — R. La deuxiéme ligne du systéme est parfois appelée « condition initiale ».

Théoréme de Cauchy-Lipschitz : Il existe une unique solution au probléme de Cauchy ci-dessus.

% En pratique &  Bien que ce théoréme garantisse I’existence d’une solution, en pratique on doit souvent résoudre
le probléme (avec toutes les étapes décrites ci-dessus). La condition initiale sert a souvent a déterminer la valeur de la
constante apparaissant dans la solution.

Exemple 27 - Résolution compléte d’un probléme de cauchy. Transformer en un probléme de Cauchy, puis résoudre
le probléme
{ xy' (z) +y(z) = 2%e® sur 0, +oof
y(1) =1

d’inconnue y :]0, +o0[— R.

Méthode d’Euler 11 s’agit d’'une méthode numérigue pour approcher les solutions d’une équation différentielle a
I’aide de l'outil informatique.

Avant de se lancer, il est essentiel de comprendre comment sont pergues les notions d’intervalle et de fonction pour
la plupart des langage de programmation. Un intervalle est souvent modélisé par une discrétisation, c’est a dire qu’il
est approché par une suite finie de points, par exemple

[0,1] ~ {0,0.1,...,0.9,1}.

discrétisation

Dans cet exemple, on parle de discrétisation réguliére, avec un pas de 0.1 = 1—10, qui consiste & découper l'intervalle en
10 (et donc avec 11 points de discrétisation). Pour approcher une fonction f : I — R, on va discrétiser ses valeurs.
Ainsi pour approcher son graphe G = {(z, f(z)) € R?, 2 € I}, dans notre exemple on obtient :

~ {(0, £(0)), (0.1, £(0.1)),...,(0.9, £(0.9)), (1, f(1)}.

discrétisation

Il ne reste plus qu’a relier ces points pour obtenir une approximation du graphe de f. Plus le pas est petit, plus la
discrétisation a des chances d’étre fidéle (enfin, cela dépend tout de méme des variations de la fonction f...).

La méthode d’Euler est un algorithme qui permet d’approcher les valeurs d’une fonction y solution d’une équation
différentielle, méme si on n’a pas réussi a résoudre cette équation différentielle.

Supposons que l'on s’intéresse & un probléme de Cauchy

{ Y'(z) + a(z)y(z) = b(x), 3)

y(7o0) = Yo

sur un intervalle [z, zf].
On se donne N € N, et une discrétisation (xy)r=o,.. n de [xo,xf], avec un pas h, c’est-a-dire que

Tpi1 = Tk + h.
Imaginons que 'on a déja approché des valeurs de la solution jusqu’a y(zy). La clef de la méthode d’Euler est d’écrire

Y(Trt1) — y(l’k)

Y (xn) ~ =

Or puisque y est solution de ’équation différentielle, y'(zx) est connue. On déduit la relation

Y(@p+1) = y(og) + b (b(xr) — al@r)y(wr)) -

On peut ainsi construire les valeurs approchées de (y(zx))k—o,... n de proche en proche.
Voici I’algorithme en python :
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Algorithm 1 Méthode d’Euler pour résoudre (3)

Entrées : Deux fonctions a et b, deux réels xg < zy, un entier N, une valeur initiale yq
Sorties : Un graphe, et un vecteur « fonction » des valeurs approchées de la solution discrétisée
h = (zf — xo)/foat(N)
Tr = X9
Y=o
pour ¢ in range(N) faire
y=y+h(b)—alx)y)
x=x+h
temps.append(x)
fonction.append(y)

plt.plot(temps,fonction)
return fonction

2.2 Equations Linéaires d’ordre 2

Nous allons passer rapidement sur les résultats déja vus au chapitre 1, mais en utilisant cette fois-ci notre connais-
sance des exponentielles complexes :
On rappelle qu’une équation différentielle linéaire d’ordre 2 & coefficients constants est de la forme

y'(x) + by (x) + ey(z) = f(z). (4)

Ici, f est une fonction donnée continue, a, b et ¢ trois coefficients complexes ou réels, et y une fonction inconnue.
On commence par étudier I’équation homogéne

y'(x) + by (z) + ey(z) = 0 ()

et I’équation caractéristique associée :
2 4+br+ec=0 (6)

d’inconnue r € C.
On a vu au chapitre 1 quelles sont les solutions lorsque les coefficients sont réels (a revoir). Maintenant on étudie
le cas complexe, qui englobe le cas réel :

Théoréme 28 - Résolution de I'équation homogéne, cas complexe. Les solutions de (5) dépendent du
discriminant A = b? — 4¢ de I'équation caractéristique (6) :

e Si A # 0, I’équation caractéristique a deux solutions distinctes complexes, appelées racines, notées r1 et ro.
Les solutions de (5) sont de la forme
y(x) = Ae"" + pe™?,

ou X\ € C et € C sont deux constantes.

e Si A = 0, I’équation caractéristique a une seule solution complexe, appelée racine double, notée r. Les
solutions de (5) sont de la forme
y(@) = (A + px)e™,

ou A € C et € C sont deux constantes.

En fait, ce théoréme englobe le cas déja vu ou a, b et ¢ sont réels :
e Si A > 0, les formules sont les mémes que dans le cas réels.
e Si A <0, on écrit
r=a—if et ro=a+if avec (o, )€ R
On a alors
Ae™ + pue™® = (Acos(Bx) + Bsin(fx)) e**
Les formules d’Euler permettent de relier (A, B) et (A, p).

Les différents principes de superposition, déja vus au chapitre 1 et dans ce chapitre pour les équations différen-
tielles d’ordre 1, restent vrais. Ainsi pour résoudre I’équation avec second membre (4), il reste & trouver une solution
particuliére.
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Stratégie pour la solution particuliére . Nous nous concentrons sur les formes suivantes du second membre f :
o Si f est de la forme f(x) = e“® avec w € C fixé, alors
* Si w n’est pas solution de I’équation caractéristique, on cherche ¥, sous la forme ae“” avec a € C a trouver.
* Si w est racine simple de I’équation caractéristique, on cherche y, sous la forme aze*” avec o € C & trouver.

2ew gvec o € C & trouver.

* Siw est racine double de I’équation caractéristique, on cherche y,, sous la forme ax
e Pour le cas a coefficients réels, Si f est de la forme f(z) = Acos(wz) + Bsin(wz) avec w € C fixé, alors

* Siiw n’est pas solution de I’équation caractéristique, on cherche y, sous la forme «a; cos(wx) + v sin(wzx).

* Siiw est racine (forcément simple), on cherche y, sous la forme ax cos(wx) + Bz sin(wz).
e Si f est un polynome de degré n, f(z) = P,(x) :

* Si ¢ # 0, on cherche y, sous la forme d’un polynéme de degré n.

*x Sic=0etb#0, on cherche y, sous la forme d'un polynéme de degré n + 1.

* Sib=c=0, on doit juste primitiver deux fois P,.

N’oubliez pas les différents outils pour transformer des fonctions trigonométriques : formules d’Euler pour se ramener
a des exponentielles complexes, linéarisation pour transformer les puissances de fonctions trigonométriques.

Exemple 29 - Des solutions exponentielles. Résoudre

VreR,  2y"(z) + 3y (x) — Sy(z) = 5™ + e + 3z,

Exemple 30 - Des solutions réelles ou complexes. Résoudre

VreR, y'(x)+y(x)= (cosz)® — 22

On présentera des solutions sous la forme complexes puis réelles.

Pour aller plus loin (HP) Si le second membre est de la forme f(z) = P,(x)e“® ou P, est un polynome de degré n,
on cherche y,, sous la forme

deg @, =n si w n’est pas racine de I’équation caractéristique
yp(x) = Qne®®, avec deg @, =n+1 si w est racine simple de I’équation caractéristique

deg @, =n+2 si w est racine double de ’équation caractéristique

Dans tous les cas, si on a oublié cette méthode, on pourra toujours chercher y, sous la forme @, (x)e“” en injectant
dans I’équation différentielle et trouver une équation sur Q.

Définition-théoréme 31 - Probléme de cauchy et théoréme de Cauchy-Lipschitz. Soient b et ¢ deux complexes,
et f: 1 — R continue. Fixons z( € I, ainsi que yg € C et y; € C. Alors on appelle probléme de Cauchy le systéme

y'(z) + by’ (2) + cy(z) = f(z)
Z/(SUO) = Yo )
Y (w0) = 1

d’inconnue une fonction y : I — R.

Théoréme de Cauchy-Lipschitz : Il existe une unique solution au probléme de Cauchy ci-dessus.

% En pratique &  Dans la résolution d’une équation différentielle d’ordre deux apparaissent deux constantes (on les
a appelées A et ). Si on veut vérifier les deux conditions initiales, cela fournit un systéme de deux équations a deux
inconnues.

Le théoréme de Cauchy-Lipschitz est trés clair en cinématique : la loi de Newton fournit en générale une équation
sur l'accélération, donc une équation d’ordre deux sur la position. Si on préscrit la position et la vitesse initiale, on
peut déterminer de maniére exacte la trajectoire de 'objet en mouvement.
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