PTSI - 2025–2026 Durée : 20 min

Interro de calcul 2 Nombres complexes et réels

Ceci est un entrainement.

Question 1: Mettre sous forme algébrique $\frac{2+i}{-3-i}$ et i^4 . Mettre sous forme algébrique : $(2+3i)^3$.

$$(2+3i)^3 = 2^3 + 3 \times 2^2 \times 3i + 3 \times 2 \times (3i)^2 + (3i)^3 = 8 + 24i - 54 - 27i = -46 - 3i$$

Question 2: Mettre sous forme exponentielle le nombre complexe z = -1 + i. En déduire $(-1 + i)^6$.

Correction: On a après calculs, ou dessin : $z = \sqrt{2}e^{i\frac{3\pi}{4}}$. Ainsi, on a

$$z^6 = \sqrt{2}^6 e^{i\frac{3\pi}{4} \times 6} = 2^3 e^{i\frac{9\pi}{2}} = 8i$$

Question 3: Calculer le module et un argument de $z = \sqrt{3} - i$.

Correction: On a |z|=2, et un argument θ vérifie :

$$\begin{cases} \cos(\theta) = \frac{\sqrt{3}}{2} \\ \sin(\theta) = -\frac{1}{2} \end{cases},$$

On peut prendre $\theta = -\frac{\pi}{6}$.

Question 4 : Déterminer l'ensemble des nombres complexes $z \in \mathbb{C}$ tels que |z-2i|=|z+3+i|. On pourra introduire des éléments géométriques de votre choix.

<u>Correction</u>: Soit A(0,2) d'affixe $z_A = 2i$ et B(-3,-1) d'affixe $z_B = -3 - i$. On a alors

$$|z - 2i| = |z + 3 + i| \iff AM = BM.$$

L'ensemble des solutions est donc la médiatrice du segment [AB]. Les plus acharnés peuvent en trouver une équation cartésienne.

Question 5 : Soit $\theta \in \mathbb{R}$, factoriser avec la technique de l'angle moitié $1 - e^{i\theta}$. En déduire le module de ce nombre complexe.

PTSI - 2025–2026 Durée : 20 min

Correction : On a :

$$1 - e^{i\theta} = e^{i\frac{\theta}{2}} (e^{-i\frac{\theta}{2}} - e^{i\frac{\theta}{2}}) = -2i\sin(\frac{\theta}{2})e^{i\frac{\theta}{2}}.$$

On déduit que $|1 - e^{i\theta}| = 2|\sin(\frac{\theta}{2})|$.

Question 6 : Résoudre : |x+1| = |2x-6|, d'inconnue $x \in \mathbb{R}$.

Correction: On raisonne selon 3 cas

- $x \in]-\infty;-1]$.
 - L'équation devient : $-x-1=-2x+6\iff x=7$. Or $7\notin]-\infty;-1]$. Donc, pas de solution sur cet intervalle.
- $x \in [-1; 3]$.
 - L'équation devient : $x+1=-2x+6 \iff x=\frac{5}{3}$. Or $\frac{5}{3} \in [-1;3]$. Donc, une solution sur cet intervalle : $\frac{5}{3}$.
- $x \in [3; +\infty[$
 - L'équation devient : $x+1=2x-6 \iff x=7$. Or $7 \in [3;+\infty[$. Donc, une solution sur cet intervalle : 7.

Conclusion : $S = \{\frac{5}{3}; 7\}.$

Question 7: Donner le tableau de variation, sur $]0, +\infty[$, de la fonction $f: x \mapsto \frac{4}{x} + x$.

Correction : Pas de piège, on applique les techniques du lycée.

Question 8:

- 1. Rappeler les valeurs de $\sum_{k=0}^{n} k$ et $\sum_{k=0}^{n} k^2$
- **2.** En déduire $\sum_{k=0}^{n} k(k+1)$.

Correction : Pas de piège, on applique le cours.

Question 9 (dédicace à Madame Cavallo):

- **1.** Exprimer $\sin(t)^2$ en fonction de $\cos(2t)$.
- **2.** En déduire $\int_0^T (\sin(\omega t + \varphi))^2 dt$, avec $\omega > 0$ et $\varphi \in \mathbb{R}$ fixés, ainsi que $T = \frac{2\pi}{\omega}$.

Correction: Voir Madame Cavallo