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17 novembre 2025
D.S. n°3

Une rédaction claire, rigoureuse,

Exercice 1 : (44 )

Partie 1 :

soignée est une condition nécessaire a la réussite.

Soit la fonction polynomiale P : x s 2x% — 3%3 + 5

S 1) Calculer P(1).

(1S 2) Factoriser « au maximum » P. (S Il oS v - 1

4 3) En déduire le signe de P(x) sur R,.
/

3

Partie 2 :

e3%*—1
eX—1

Soit la fonction f : x +—

O/~ 1) Déterminer ’ensemble de définition de la fonction [ noté Df.
2) Montrer que :
Ple”
4/ e (_ex(_—l))z'
{4 / 3) En déduire les variations de f sur Dy et donner (sans justification) les limites. (4 + ©,3 € oo )
4) On s’intéresse a un prolongement de la fonction f au point d’abscisse 0.
Q.S ) a) Rappeler (sans justification) la formule de factorisation de a — b™.

o, ;} b) Utiliser cette formule avec a = e*, b = 1 etn = 3.

e3%-1

4 / ¢) En déduire ’lcl_r)rtl)

0,5 d) Conclure quant a la possibilité du prolongement par continuité au point d’abscisse 0 ?
i

Pud

Partie 3 :

Soit la fonction g : x +— e2* + X 4+ 1
\ / 1) Montrer que g réalise une bijection de R dans un intervalle J & déterminer.
o, )) 2) Calculer g(0).
bl / 3) Justifier que g~* est dérivable sur J. 3 0,
0,3) 4) Calculer (g~1)'(3).

5) Soity € J.
1S a) Résoudre dans R I’équation g(x) = y.

b) En déduire I’expression de g~2.
o,5 /
I, .

S



Exercice 2 : @

Onrappelleque U={z€C||z|=1}.
) C* q C*
Soit f = 2 1

=i
z3

V' 1) a) Résoudre dans C* I’équation f(z) = 1.

0,5 b) Endéduire f~1({1}).

1,5 2 a) Résoudre dans C* I’équation f(z) = i.

©,3 b) Endéduire f~2({i}).

3) L’application f est-elle une injective de C* dans C* ?

4) Justifier que f est surjective de C* dans C* ?

5) Déterminer I’image directe de U par 1’application f.
6) On s’intéresse a I’image réciproque de R%.
a) Soitz=re® our=|z|etf = arg(z) [2n].
Gh Exprimer f(z) en fonction de 7 et 6.
\3 b) En déduire une condition nécessaire et suffisante pour que f(z) € R%.

0/ 4 © Endéduire FH(RY).

Exercice 3 : @

1) Soitn € N. On s’intéresse a la somme suivante :

< n+1
S”=Z(k+1)(k+1)
k=0
a) Montrer que :
+1 n
4 vneN,vk € [0,n], (k+1)(:+1)=(n+1)(k)

} 5 b) Calculer S,

2) Soitn € N\{0,1}. On s’intéresse & la somme suivante :

) k+11
L e-Dk+ 1)k +2)

Tn

a) Déterminer les réels a, b et c tels que :

(0 g T k+11 a F: b X i
L =
kENOL: GoDRIDG+D G-D G+D G+
Lo 2/ b) Calculer T, (on pourra observer et utiliserque: b = —a —c). o5 + 0,5 +9,5 « af
y ¢) En déduire la limite de (T;,) quand n — +oco. cheg
3) Soitn € N*. Calculer :
4 .Y {2
» « Z j
’3(3 Sl z 1sisjsn‘l =l

(I} F €3



