PTSI - 2025–2026 Durée : 2h

DST₂

Aucun document n'est autorisé.

L'usage de toute calculatrice est interdit.

Vous êtes jugés sur le fond comme sur la forme : la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies. On veillera notamment à soigner la présentation, à mettre en évidence les principaux résultats.

Exercice 1 - Une étude de fonction.

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f: x \mapsto \frac{2x+1}{x^2+2x+7}$.

- 1. Justifier qu'il est bien possible de définir cette fonction sur \mathbb{R} .
- 2. Dresser son tableau de variations, et en déduire si elle admet un minimum ou un maximum, que l'on déterminera le cas échéant.
- **3.** Déterminer l'ensemble image $J = f(\mathbb{R})$. La fonction est-elle une bijection de \mathbb{R} sur J? On justifiera la réponse.
- **4.** Justifier que la fonction $g: x \mapsto \frac{2x+1}{x^2+2x+7}$ est une bijection, de $[2; +\infty[$ dans un intervalle à préciser. On ne demande pas de calculer la bijection réciproque.
- **5.** Déterminer $g^{-1}(\frac{7}{22})$, puis justifier que g^{-1} est dérivable en ce point, et déterminer $(g^{-1})'(\frac{7}{22})$.

Correction:

1. (0.5pt) Après une étude rapide de discriminant (ou une mise sous forme canonique), on vérifie :

$$\forall x \in \mathbb{R}, \quad x^2 + 2x + 7 > 0.$$

Ainsi, on peut définir f sur \mathbb{R} comme quotient de fonctions dont le dénominateur ne s'annule pas.

2. (3pt) On calcule la dérivée. Après calculs :

$$\forall x \in \mathbb{R}, \quad f'(x) = \frac{-2x^2 - 2x + 12}{(x^2 + 2x + 7)^2} = 2\frac{-x^2 - x + 6}{(x^2 + 2x + 7)^2}$$

Ainsi, f' est du signe du numérateur $-x^2 - x + 6$. On trouve deux racines : -3 et 2. Ainsi, $-x^2 - x + 6$ est du signe du coefficient dominant, sauf entre les racines. On déduit le tableau de variations : -

x	$-\infty$		-3		2		$+\infty$
f'(x)		_	0	+	0	_	
f(x)	0 —		$-\frac{1}{2}$ -		$\rightarrow \frac{1}{3}$		→ 0

Le calcul des limites en $\pm \infty$ se fait avec une rédaction standard du lycée.

Par lecture du tableau, f possède un minimum, $-\frac{1}{2}$, et un maximum, $\frac{1}{3}$.

3. (3pts) Puisque f est continue, par lecture du tabeau : $f(\mathbb{R}) = \left[-\frac{1}{2}, \frac{1}{3}\right]$. La fonction n'est pas une bijection : certains nombres de $\left[-\frac{1}{2}, \frac{1}{3}\right]$ ont plusieurs antécédant par f. Par exemple, par lecture du tableau, $y = \frac{1}{4}$ possède deux antécédants, un dans] - 3, 2[, et un dans $]3, +\infty[$. Il est inutile d'exhiber ces antécédants.

Remarque: Il n'était pas correct de dire que f n'est pas monotone pour conclure que f n'est pas bijective.

PTSI - 2025–2026 Durée : 2h

4. (1.5pts) La fonction g est définie comme la fonction f, mais sur l'ensemble $[2, +\infty[$ (on dira que g est la restriction de f à $[2, +\infty[$). Ainsi, g est strictement décroissante, continue, donc par lectre du tableau elle définit une bijection de $[2, +\infty[$ sur $]0, \frac{1}{3}]$.

5. (1.5pts) On cherche $x \in [2, +\infty[$ tel que $g(x) = \frac{7}{22}$. Si on ouvre l'oeil, on note que 3 convient. Sinon, on résout $\frac{2x+1}{x^2+2x+7} = \frac{7}{22}$, en passant par une équation de degré 2. Quelle que soit la méthode : $g(3) = \frac{7}{22}$ et donc $g^{-1}(\frac{7}{22}) = 3$. Puisque $g'(3) = -\frac{3}{121} \neq 0$, la fonction g^{-1} est dérivable en $\frac{7}{22}$, avec $(g^{-1})'(\frac{7}{22}) = \frac{1}{g'(g^{-1}(\frac{7}{22}))} = -\frac{121}{3}$.

Exercice 2 - Une bijection.

Soit la fonction $f: [-1;0] \to [0;1]$ définie par $f: x \mapsto \sqrt{1-x^2}$. On admet que f est une bijection. Déterminer la fonction réciproque f^{-1} .

Correction: (3pts) On fixe $y \in [0, 1]$, on résout :

$$y = f(x)$$
, d'inconnue $x \in [-1, 0]$
 $\iff y = \sqrt{1 - x^2}$
 $\implies y^2 = 1 - x^2$
 $\iff x^2 = 1 - y^2$
 $\iff x = -\sqrt{1 - y^2} \text{ car } x \in [-1, 0]$

Attention à ne pas conclure trop vite que $x=-\sqrt{1-y^2}$ est solution! A ce stade, à cause de l'implication, on a prouvé : si l'équation y=f(x) admet une solution, on a nécessairement $x=-\sqrt{1-y^2}$; mais l'équation pourrait aussi ne pas avoir de solution

Or, on a admis que la fonction f est bijective, donc $y \in [0,1]$ possède un antécédant $x \in [-1,0]$, et donc il s'agit de $x = -\sqrt{1-y^2}$.

Notez que sans cette information, on aurait calculé f(x) pour $x = -\sqrt{1 - y^2}$, et on aurait trouvé |y|, donc y. Une troisième explication est de noter que l'implication est en fait une équivalence car y est supposé positif.

Exercice 3 - Une valeur absolue.

Résoudre : $\left| \frac{x-4}{-x+1} \right| \ge 2$, d'inconnue $x \in \mathbb{R}$.

<u>Correction</u>: Voir cours, un exercice très proche a été traité. Réponse finale: S = [-2, 2].

Exercice 4 - Un quotient complexe.

Pour un nombre complexe $z \in \mathbb{C} \setminus \{1\}$, on note $q(z) = \frac{1+z}{1-z}$.

- **1.** Supposons que $z = e^{i\theta}$, avec $\theta \in \mathbb{R}$. Exprimer q(z) en fonction de θ , et en déduire que q(z) est imaginaire pur.
- **2.** Réciproquement, soit $z \in \mathbb{C}\setminus\{1\}$ tel que q(z)=ia, avec $a\in\mathbb{R}$. Exprimer z en fonction de a, et calculer |z|.
- 3. Résumer les deux questions précédentes par une courte équivalence de votre choix.

Correction:

1. (2pts) On a, par exemple avec la technique de l'angle moitié :

$$q(z) = \frac{1 + e^{i\theta}}{1 - e^{i\theta}} = \frac{e^{i\frac{\theta}{2}}(e^{-i\frac{\theta}{2}} + e^{i\frac{\theta}{2}})}{e^{i\frac{\theta}{2}}(e^{-i\frac{\theta}{2}} - e^{i\frac{\theta}{2}})} = \frac{2\cos(\frac{\theta}{2})}{-2i\sin(\frac{\theta}{2})} = i\frac{\cos(\frac{\theta}{2})}{\sin(\frac{\theta}{2})}.$$

Cela prouve que $q(\theta)$ est imaginaire pur.

D'autres techniques fonctionnaient, par exemple la technique du conjugué, ou montrer que : $\overline{q(z)} = -q(z)$.

2. (2pts) On a :

$$q(z) = ia \iff \frac{1+z}{1-z} = ia \iff 1+z = ia(1-z) \iff z(1+ia) = ia-1 \iff z = \frac{ia-1}{1+ia}$$

On a alors:

$$|q(z)| = \frac{|ia-1|}{|1+ia|} = \frac{\sqrt{1+a^2}}{\sqrt{1+a^2}} = 1.$$

PTSI - 2025–2026 Durée : 2h

3. (1pt) Notons que |z|=1 si et seulement si on peut écrire $z=e^{i\theta}$ avec $\theta\in\mathbb{R}$. On a donc prouvé :

$$\forall z \in \mathbb{C} \setminus \{1\} : \quad |z| = 1 \iff q(z) \in i\mathbb{R}.$$

Exercice 5 - Une équation complexe.

Résoudre l'équation $z^2 = 1 - i$, d'inconnue $z \in \mathbb{C}$,

- 1. En donnant les éventuelles solutions sous forme algébrique.
- 2. En donnant les éventuelles solutions sous forme exponentielle.
- **3.** En déduire $\cos(\frac{\pi}{8})$.

Correction:

Voir cours

Exercice 6 - Une formule du cours.

Soit $n \in \mathbb{N}$. Rappeler la valeur de $\sum_{k=0}^{n} k$, et démontrer votre résultat par récurrence.

Correction:

Voir cours

Exercice 7 - Un triangle.

Soient les points A d'affixe $z_A=1+\sqrt{2}i$ et B d'affixe $z_B=2\sqrt{2}+1-3\sqrt{2}i$. Déterminer l'affixe z_C du point C tel que le triangle ABC soit isocèle direct en A, avec $\widehat{BAC}=45^\circ$. On pourra s'intéresser au quotient $\frac{z_A-z_B}{z_A-z_C}$.

Correction:

Le quotient $\frac{z_A-z_B}{z_A-z_C}$ comporte des informations géométriques lorsque l'on calcule son module et son argument :

$$\left|\frac{z_A - z_B}{z_A - z_C}\right| = \frac{AB}{AC} = 1$$
 car le triangle est isocèle

 et

$$\arg(z_A - z_B z_A - z_C) = (\vec{CA}, \vec{BA}) = (\vec{AC}, \vec{AB}) = -\frac{\pi}{4} \text{ dessin}$$

Ainsi, on peut écrire ce quotient sous forme exponentielle :

$$\frac{z_A - z_B}{z_A - z_C} = e^{-i\frac{\pi}{4}}.$$

On déduit z_C après calculs.