DM "d'octobre" Etudes de fonctions et bijections, sommes

Consigne : Aucun exercice n'est vraiment dur. S'assurer que la rédaction est parfaite, utiliser des quantificateurs et des mots ou symboles mettant en évidence vos raisonnements.

Exercice 1 000 **Cours du lycée et valeur absolue** Assurer-vous de savoir déterminer les racines, les variations et le minimum (ou maximum) d'un polynôme de degré 2, et de savoir le tracer.

S'entrainer avec le polynôme $P: \mathbb{R} \to \mathbb{R}$ défini par

$$P(x) = x^2 + x - 2$$
.

En particulier:

- 1. Trouver ses racines, si possible "à vue", et le factoriser "par ses racines".
- **2.** Exploiter la forme canonique (sans formules, mais avec la méthode du cours), pour donner le minimum et les variations, sans calculer la dérivée. Que vaut $P(\mathbb{R})$?
- **3.** La fonction P est-elle une bijection? (On justifiera la réponse).

— Exercice 2 ••∘ — La fonction sh avant l'heure

Soit la fonction $g: x \mapsto \frac{1}{2}(e^x - e^{-x})$, définie sur \mathbb{R} . Montrer qu'elle est bijective, et calculer la bijection réciproque. On pourra poser $X = e^x$ pour résoudre y = g(x).

— Exercice 3 ••∘ — On prépare le cours

On souhaite étudier la fonction $\tan : x \mapsto \frac{\sin x}{\cos x}$

- 1. Justifier que cette fonction est bien définie sur $]-\frac{\pi}{2},\frac{\pi}{2}[$, étudier sa parité, et donner sa dérivée.
- **2.** Montrer qu'elle définit une bijection, notée f, de $]-\frac{\pi}{2},\frac{\pi}{2}[$ sur un ensemble à déterminer (on n'essayera pas de "calculer" sa réciproque).

- **3.** Déterminer $f^{-1}(1)$.
- **4.** Calculer une expression pour $(f^{-1})'(x)$ (sans expression pour f^{-1} !). On aura remarqué que $f' = 1 + \tan^2$.

Exercice 4 ••• Un calcul de somme Calculer pour $n \ge 2$:

$$S_n = \sum_{k=2}^{n} \ln \left(\frac{k^2}{(k-1)(k+1)} \right)$$